
Windows®
Embedded CE 6.0
Fundamentals

Stanislav Pavlov
Pavel Belevsky

Windows® Embedded CE 6.0
Fundamentals

Stanislav Pavlov
Pavel Belevsky

Dedication

Dedicated to Taras V. Demyankov,

without whom I would not have become the kind of person and the specialist that I am,

and without whom this book would have never been possible.

He was really looking forward to this book appearing,

but unfortunately he did not live to see that day.

 v

Contents at a Glance
 1 Introduction. 1
 2 Operating System and Application Development Tools 11
 3 Operating System Architecture. 75
 4 Build System . 101
 5 Board Support Package (BSP) . 121
 6 Driver Architecture . 135
 7 Starting the Operating System . 159
 8 Building Devices . 167
 9 Application Development . 203
 10 Testing Operating System Images . 215
 Glossary . 231
 References . 233
 Index . 235

 vii

Table of Contents

 1 Introduction. 1
About This Book . 1

Chapter 1: Introduction . 1

Chapter 2: Operating System and Application Development Tools 1

Chapter 3: Operating System Architecture . 1

Chapter 4: Build System . 2

Chapter 5: Board Support Package (BSP) . 2

Chapter 6: Driver Architecture . 2

Chapter 7: Starting the Operating System . 3

Chapter 8: Building Devices . 3

Chapter 9: Application Development . 4

Chapter 10: Testing Operating System Images . 4

Glossary . 4

References . 4

Resources . 4

Embedded Systems . 5

Windows Embedded CE History . 6

Windows Embedded CE Solutions . 7

Developer Workstation Requirements . 10

 2 Operating System and Application Development Tools 11
Installing Visual Studio 2005 . 11

Installing the Platform Builder Toolkit . 20

Installing Updates . 24

Development Tools Interface . 32

Main Views, Windows, and Menus of the Design Interface 32

Remote Utilities . 55

File Viewer . 55

Heap Walker . 59

Zoom . 62

Process Viewer . 63

Registry Editor . 64

System Information . 65

Performance Monitor . 66

Spy . 67

viii Table of Contents

Kernel Tracker . 69

Call Profiler . 71

 3 Operating System Architecture. 75
Operating System Kernel Architecture . 76

Operating System and Hardware Interaction . 78

Operating System Virtual Memory Architecture . 78

Memory Management . 83

Processes, Threads, Fibers, and the Scheduler . 88

Synchronization Objects . 93

Interrupt Architecture . 98

 4 Build System . 101
Directory Tree of the Build System . 102

Environment Variables of the Build System . 104

Image Build Modes . 105

Build Stages . 106

Pre-Sysgen Build . 108

Sysgen . 108

Post-Sysgen Build . 109

Build Release Directory (Buildrel) . 110

Make Run-Time Image (Makeimg) . 110

Binary Image Builder (.Bib) . 111

Object Store Initialization Files (.Dat) . 115

Registry Initialization Files (.Reg) . 115

Database Initialization Files (.Db) . 115

Component and Module Build . 116

Dirs Files . 116

Makefile Files . 117

Sources Files . 117

Sources .cmn File . 118

Build Errors . 118

 5 Board Support Package (BSP) . 121
BSP Directory Structure . 122

Boot Loader . 124

OEM Abstraction Layer . 127

Common Platform Code . 129

Kernel Independent Transport Layer (KITL) . 132

 Table of Contents ix

Drivers . 132

Configuration Files . 132

Creating a New BSP . 133

 6 Driver Architecture . 135
Driver Implementation Architecture . 136

File System Drivers, Thread Drivers, and Native Drivers 138

User-Mode Drivers and Kernel-Mode Drivers . 141

Loading the Drivers . 146

Driver Development . 149

 7 Starting the Operating System . 159
Image Preparation . 159

Startup Process . 161

Loading the File System . 164

Loading the Device Manager . 165

 8 Building Devices . 167
BSP Cloning . 173

Cloning a Component or a Project . 175

Automatic Application Launch at Startup . 177

Automatic Load of Drivers During the System Startup 180

Device Power Management . 181

Device File System . 187

Device Registry . 193

Device Databases . 197

Device Plug and Play Messaging System . 198

Device System Shell . 199

Adding Files to the Device Image . 200

Creating File Shortcuts in the Device . 201

 9 Application Development . 203
Native Code and Managed Code . 203

OS Design Subprojects and Separate Projects . 205

Building Applications as OS Design Subprojects . 207

Building Applications as Separate Projects . 209

Environment Preparation for Building Native Code Applications 209

Environment Preparation for Building Managed Code Applications . . 211

Connecting to the Device to Deploy and Debug Applications 212

x Table of Contents

 10 Testing Operating System Images . 215
Windows Embedded CE Test Kit . 215

Testing the Image with Support for KITL Enabled . 217

CETK Utilities . 222

Application Verifier . 222

CPU Monitor . 225

PerfToCsv . 226

Print Screen . 227

Windows Embedded CE Stress Tool . 227

 Glossary . 231

 References . 233

 Resources . 235

 Index . 237

 1

Chapter 1

Introduction
This book addresses technical aspects of building operating system (OS) images for embed-
ded applications and contains a wide spectrum of practical information . A developer can
use this book as an everyday reference . It is our hope that this book will help the reader to
build successful solutions by using the Microsoft Windows Embedded CE platform . This book
is intended for everyone who develops or plans the development of embedded devices
based on Windows Embedded CE . If you are just learning about the Windows Embedded
CE operating system, this book can serve as a starting point for further learning . If you are
 already familiar with Windows Embedded CE, this book provides advice and recommen-
dations for developing devices .

About This Book
The book consists of 10 chapters, a reference list, and resources, as follows .

Chapter 1: Introduction
This chapter provides a first look at Windows Embedded CE 6 .0 R2, as well as its capabilities
and development tools . The chapter provides an overview of the operating system, where
and how it can be used, and a brief description of other available embedded operating
 systems from Microsoft .

Chapter 2: Operating System and Application
Development Tools
The Windows Embedded CE 6 .0 R2 operating system includes an easy-to-use suite of
 developer tools that enables you to configure and build an image of the operating system,
develop drivers, and create applications . The chapter discusses the process of installing the
development environment and covers the available tools and their capabilities .

Chapter 3: Operating System Architecture
This chapter provides a detailed look into the architecture of the Windows Embedded CE 6 .0
R2 operating system, including kernel architecture, virtual memory, processes, interrupts,
and scheduler . Windows Embedded CE 6 .0 is a real-time, componentized, multithreading
operating system that supports preemptive multitasking and runs on multiple processor

2 Chapter 1 Introduction

 architectures, including ARM, Microprocessor without Interlocked Pipeline Stages (MIPS), x86,
and SH4 . The Windows Embedded CE operating system operates in the virtual address space
of 4 gigabytes (GB) . The system kernel uses the upper 2 GB of virtual memory in the OS,
while the user process uses the lower 2 GB of virtual memory .

Chapter 4: Build System
This chapter addresses the Windows Embedded CE 6 .0 R2 unified build system for OS
 images . The Windows Embedded CE tools use a unified build system . An operating system
can be built by using the Microsoft Visual Studio 2005 integrated environment or by using
the command line . The build tools are composed of batch files and console utilities . The build
process is controlled by the preconfigured environment variables and the parameters that
are passed when a program call is made . Environment variables are initialized during the first
stage by using the command files (the PBInitEnv .bat file is called, from which a call is then
made to the Wince .bat file by supplying it with all necessary parameters) . Blddemo .bat is the
main command file of the build system . It represents a point of entry into the system be-
cause it launches other files and build utilities that can launch other command files and build
utilities .

Chapter 5: Board Support Package (BSP)
This chapter discusses various aspects of the BSPe, such as the architecture, the structure of
package directories, and the common platform code . The BSP enables a developer to build
a run-time image for a specific hardware platform . To build an operating system image for
a hardware platform, it necessary to have the corresponding BSP . Usually, BSP develop-
ment is the most labor-intensive part of building a device . BSP development requires that
the developer know the hardware architecture as well as the operating system architecture .
All interaction between the operating system and the device is implemented in the BSP .
Therefore, the quality of the BSP determines the resulting quality of the device .

Chapter 6: Driver Architecture
This chapter covers the architecture of drivers for Windows Embedded CE 6 .0 R2, including
classification according to various criteria, implementation architecture, native and stream
drivers, loading drivers, and driver development . A driver represents code that provides the
operating system with an interface to a physical or a virtual device . The operating system
expects a driver to implement a predetermined interface, which creates an abstraction of a
specific hardware or virtual device implementation . Under Windows Embedded CE, in most
cases, a set of functions and control codes (IOTCLs) represents this interface that the driver
code implements . The driver infrastructure makes it possible for a certain component of the

 About This Book 3

operating system to enable other components of the operating system and applications to
use an integrated interface with the hardware, regardless of its implementation .

Chapter 7: Starting the Operating System
Understanding the processes that occur at system startup is important for building Windows
Embedded CE–based devices . By looking at the process of system initialization, you can more
clearly understand the role of each component included in the system kernel, as well as the
role of the code supplied by Microsoft and the one developed by the BSP manufacturer .

Chapter 8: Building Devices
The process of building devices on the Windows Embedded CE platform can be divided into
the following several stages:

n Device planning .

o Defining the device requirements .

o Choosing and/or planning the development of the hardware platform .

o Selecting the base template of the operating system design .

n Developing the hardware platform (optional) .

n Developing and updating the BSP for a selected hardware platform (optional) .

o Launching Windows Embedded CE on a target hardware platform .

o Updating and developing the drivers .

n Operating system design .

o Configuring a run-time image .

o Application development .

o Building a staging version of the OS image .

o Building a Software Development Kit (SDK) set to provide outside developers
with an opportunity for development under this device .

o Building the final version of the image for the release .

n Image testing .

n Planning for image deployment and the process of image deployment .

4 Chapter 1 Introduction

Chapter 9: Application Development
This chapter covers the differences between native (unmanaged) and managed code, choos-
ing when to create an OS design subproject or a separately developed project, how to pre-
pare for application development, making device connections, and application debugging
approaches .

Device applications for Windows Embedded CE can be developed by using the native code
and managed code . You can develop native code applications either as subprojects of the
operating system design, or as separate projects . While developing projects in the na-
tive code separately from the operating system design, you must first build a design of the
 operating system for which you will be developing applications . After that, you can create
an SDK and install it on a development workstation . You can develop applications that use
managed code only as separate projects . However, as opposed to native code applications,
managed code applications do not require an SDK to be installed . Instead, they rely on the
device’s run-time environment .

Chapter 10: Testing Operating System Images
The process of testing operating system images for target devices is an integral part of
the device-development process . A thorough and regular testing during the development
stage reduces the overall cost of the device maintenance during its life span . Testing and
 verification also enable developers to find potential problems and resolve them .

Microsoft’s toolset offers a wide selection of advanced testing tools included in the Windows
Embedded CE Test Kit (CETK) .

Glossary
The glossary contains a listing of terms used in the book and their explanation .

References
This section contains the literature sources that were referred to or otherwise used for writing
the book .

Resources
A list of useful resources, such as:

n Web sites .
n Newsgroups .
n Developer forums .
n Books .

 Embedded Systems 5

Embedded Systems
Each day, computer technologies are becoming more and more integrated with our lives .
Most of us cannot imagine being without a cell phone or an MP3 player . No one is surprised
to see an automated teller machine (ATM) on the street or at a subway station . People’s
homes often contain cable and satellite receivers . A growing number of amateur photogra-
phers prefer digital cameras . What do all these devices have in common? The answer is quite
simple—they all have a microprocessor . Often times, these microprocessors are very power-
ful . Not long ago, most computer users would have dreamed about having the processing
capabilities available to us now . Yet, in order to utilize a modern processor and to make sure
it performs its assigned functions, you need to have an operating system and an application .

At the initial stage of the embedded device market 10 years ago, the producer had no other
choice but to create a new, specialized operating system for each new device that was tightly
integrated with software responsible for the execution of certain functions . This approach,
in addition to being time-consuming, required the efforts of a large team of highly skilled
programmers . All of this, in turn, resulted in high development costs and high product costs,
which sharply limited the number of potential consumers . Despite this, demand for various
intelligent devices noticeably increased . The emergence of specialized operating systems
designed for a broad spectrum of solutions helped in addressing the resource and time
 requirements of the development . Now, developers can focus on creating applications and
implementing new features for consumers .

In 1996, Microsoft Corporation introduced its first Microsoft Windows CE 1 .0 operat-
ing system for non-personal-computer embedded devices . Microsoft wanted to create an
 operating system suitable for a wide range of tasks and provide developers with the op-
portunity to use already existing knowledge in the development of programs for computers
 running Windows, through the use of a common programming interface for all systems .
In this way, the task of creating a single platform for embedded devices was resolved .
Developers who have experience in writing software for desktop computers could build
 applications for embedded devices . This development also fulfilled an important requirement
for the platform, which is the ability to implement all the latest achievements in information
technology, such as Internet technologies, wireless communications, and digital audio and
video recording . All this has led to a further reduction in costs and development time, and
thus enabled developers to create mass-produced, high-tech devices .

Today, Microsoft offers manufacturers and developers of embedded devices a line of
 operating systems . This line includes several classic operating systems that have licens-
ing restrictions to be used only with embedded and non-personal-computer devices; two
 operating systems designed for general use; an operating system targeting a certain market;
as well as versions of server operating systems for creating specialized network servers .
Specifically, Microsoft includes:

6 Chapter 1 Introduction

n Windows Embedded CE is designed for mobile devices, terminals, cell phones and
IP phones, multimedia devices, TV/video consoles, industrial automation equipment,
and other devices that require a minimum size, integration of multiple microprocessor
architectures, and support for real-time operations .

n Windows XP Embedded is designed to be used in ATMs, gaming devices, heavy-
duty TV/video consoles, cash registers, point-of-sale devices, and information kiosks—
Areas that require high productivity, data security, the use of standard computer
equipment, and minimal expenses for developing and using software applications .

n Windows Embedded for Point of Service (WEPOS) is designed for the service in-
dustry . It is based on the Windows XP Embedded technology, and it enables original
equipment manufacturers (OEMs) to deploy from standard distribution media .

n A line of embedded server solutions from Microsoft is a logical conclusion of the
broader line of embedded operating systems . It enables developers to build infrastruc-
ture solutions based on the Windows Embedded platform .

Aside from the operating systems mentioned above, it is necessary to also mention the
Microsoft Windows Mobile operating system, which is designed for the manufacturers of
pocket PCs and smart phones . It is based on the CE operating system and contains additional
wireless technologies and specialized software .

Windows Embedded CE History
The history of Windows Embedded CE began in 1996, when Microsoft released its first oper-
ating system (CE 1 .0) for non-personal-computer devices, which was originally positioned for
the pocket PC market . In 1997, the system (2 .0 CE) became componentized and was designed
for a wide range of devices and more processor types . Following that, there were two more
minor releases (2 .11 and 2 .12), which expanded and enlarged the functionality of the operat-
ing system . Version CE 3 .0, released in 2000, contains support for real-time operation and ad-
vanced multimedia technologies such as DirectDraw, DirectShow, and Windows Media Player .

The next version (CE 4 .0) came out in 2001 . It contained support for advanced technologies
such as Direct3D, Universal Disc File System (UDFS), Simple Object Access Protocol (SOAP),
advanced power management, and SQL Server CE database . Minor releases 4 .1 and 4 .2 pro-
vided developers with expanded accessibility functionality by adding support for viewing
files, Bluetooth profiles, and IPv6, as well as support for Voice over Internet Protocol (VoIP)
telephony, transaction-safe FAT (TFAT), and .NET Compact Framework 1 .0 .

In 2005, Microsoft released the next version of the system (CE 5 .0), which provided develop-
ers with support for new technologies, such as Universal Serial Bus (USB) 2 .0, Secure Digital
Input/Output (SDIO), Windows Media 9, and Microsoft Internet Explorer 6, as well as a uni-
fied build system, release-quality drivers, and a BSP with a dedicated general development
infrastructure of BSP and OEM adaptation layer (OAL) available to the developer . In re-

 Embedded Systems 7

sponse to the demands of today’s embedded devices market, Microsoft released a Network
Multimedia Feature Pack in 2006 .

With Windows Embedded CE version 6 .0, released in the fall of 2006, the system architecture
has undergone substantial changes . Now every process has 2 GB of virtual memory (previously
32 MB), and the number of possible simultaneously running processes increased to 32,000 (pre-
viously 32) . In previous versions, parts of the system kernel were implemented as a set of sepa-
rate processes, whereas in Windows Embedded 6 .0, they are combined into one kernel . System
processes have become dynamic-link libraries (DLLs) that are loaded into kernel space . This
increases the performance of the operating system, reduces overhead for system application
programming interface (API) calls, and unifies the kernel interface . Now a developer can load
drivers into kernel space and also be able to create drivers that load in a special user process .

In November 2007, Microsoft released the Windows Embedded CE 6 .0 R2 upgrade, which
adds new components and BSP packages to the CE 6 .0 operating system .

Windows Embedded CE Solutions
Many developers come across different versions of Windows Mobile created on pocket
computers based on Windows CE, and that may create a stereotype that CE was intended
 exclusively for mobile devices . In reality, there are already Windows CE–based solutions avail-
able for various applications, from car-based computers, consumer electronics, and telecom-
munication equipment to industrial automation systems and robotics equipment . The entire
spectrum of available applications was initially designed in the system’s architecture . As
 opposed to many other operating systems, from the beginning, Windows Embedded CE was
created without being tied to a specific processor architecture or hardware implementation .
The only limitation was that it used a 32-bit processor . Today, Windows Embedded CE 6 .0
supports four processor architectures (ARM, MIPS, SH4, and x86) and a considerable number
of their implementations offered by different processor manufacturers .

Windows Embedded CE provides developers with flexibility to choose from more than 600
components that can be used to create operating system images that include only the
functionality that is necessary for a given device . The operating system offers application
developers a set of APIs based on standard Win32 API as well as additional APIs specifically
for embedded devices . Because Windows Embedded CE supports only part of the Win32 API
and has certain specifics that have to do with the embedded nature of the operating system,
applications written for the desktop versions of the Windows operating system may require
additional adaptation and modification in order to be functional on embedded devices .
Either way, launching programs on a device requires recompiling .

Similar to the desktop versions of Windows, Windows Embedded CE uses a standard format
of the executable file—Portable Executable (PE), which enables the developer to use the ma-
jority of standard utilities that support PE format, such as Dependency Walker or DumpBin .

8 Chapter 1 Introduction

Windows Embedded CE 6 .0 offers the developer a wide range of opportunities and supports
a large selection of technologies, such as:

n Rapid systems and application development .

o ARM emulator and design templates for various types of devices .

o AYGShell API, which ensures compatibility with Windows Mobile applications .

o .NET Compact Framework 2 .0 and 3 .5, including the headless device version,
Active Template Library (ATL), Microsoft Foundation Classes (MFC), Windows
Template Library (WTL), Standard Template Library (STL), ActiveSync, Exchange
Server client, intermediate Global Positioning System (GPS) driver, Speech API 5 .0,
Windows Messenger, Pocket Outlook Object Model (POOM), Extensible Markup
Language (XML), and Microsoft SQL Server Compact 3 .5 .

o Simple Network Management Protocol (SNMP) .

o 3 .9 million lines of source code, 100 percent of the source kernel code .

o Production Quality OAL (PQOAL), a set of libraries and source code for creating
the OAL .

o BLCOMMON, a set of libraries and source code for creating a boot loader .

o Production-quality drivers and BSPs included with the shipped product .

o Reference implementations of drivers and technologies .

o Support for several languages and building devices with several language
interfaces .

n Network and wireless technologies .

o Transmission Control Protocol/Internet Protocol (TCP/IP), IPv4, IPv6, Network
Driver Interface Specification (NDIS) 5 .1, Winsock 2 .2, Internet Protocol security
(IPsec) v4 .

o Personal area network (PAN), local area network (LAN), wide area network
(WAN), Bluetooth, 802 .11 .

o SOAP, OBject EXchange (OBEX), Lightweight Directory Access Protocol (LDAP)
 client, Remote Desktop Protocol (RDP) .

o VoIP, real-time communications (RTC), Session Initiation Protocol (SIP) .

o Radio Interface Layer (RIL), support for Short Message Service (SMS), Wireless
Application Protocol (WAP), support for Subscriber Identity Module (SIM) cards .

o Remote API (RAPI) and RAPI2, Point-to-Point Protocol over Ethernet (PPPoE),
Telephony Application Programming Interface (TAPI), virtual private network (VPN) .

 Embedded Systems 9

n Server-side technologies .

o Telnet, File Transfer Protocol (FTP), server message block (SMB), Common Internet
File System (CIFS), Microsoft Message Queuing (MSMQ), Remote Access Service
(RAS), Point-to-Point Tunneling Protocol (PPTP), Universal Plug and Play (UPnP) .

o Web server with support for Active Server Pages (ASP) .

o Parental control .

o Print server, Web proxy .

n Multimedia .

o DirectDraw, DirectShow, Direct3D .

o Windows Media Player, Windows Media Audio (WMA), MP3 .

o Internet Explorer .

o DVD Video API .

o Digital Rights Management .

n Storage and file systems .

o File Allocation Table (FAT), TFAT, Extended File Allocation Table (exFAT), binary
ROM image file system (BinFS), Object Store .

o CD File System (CDFS)/UDFS .

o File System Driver (FSD) Manager, cache manager .

o CEDB, EDB database .

With its wide selection of technologies and support for a variety of independent third-party
software, Windows Embedded CE enables developers to create a broad range of devices,
including:

n Personal mobile devices .

n Tablet PCs .

n Smart phones .

n IP Phones .

n Digital cameras .

n Personal multimedia devices .

n Thin clients .

n Gateways .

n TV/video plug-in devices .

n Industrial controllers .

10 Chapter 1 Introduction

n Medical equipment .

n Printers .

n Scanners .

n Gaming devices .

The development tools for Windows Embedded CE 6 .0 are integrated with Visual Studio
2005 . They are supplied as an addition to this advanced development suite . Integration with
Visual Studio makes it possible to use a single environment for application and system de-
velopment . Along with the new development tools, the tool suite also includes a new ARM
device emulator integrated with Platform Builder, which simplifies configuration tasks and
the process of developing and testing of operating system images . The entire capability of
the Visual Studio source-code editor is now available to CE 6 .0 developers, including syntax
highlighting and Microsoft IntelliSense technology . New graphic editors are available, includ-
ing registry editor and OS image editor . Windows Embedded CE 6 .0 uses the improved Visual
Studio 2005 compiler, which has better compatibility with C++; includes improved libraries;
support for CRT, ATL, and MFC; and more advanced run-time safety checks . The new version
of CE also includes postmortem debugging . This presents additional opportunities for diag-
nosing potential problems and optimizing the efficiency of the system . The software package
includes a utility that determines the appropriate run-time license and supports export of
 reports into HTML . This improves coordination and tracking while working with a project .

Developer Workstation Requirements
n Microsoft Windows 2000 Professional with Service Pack 4 or Windows XP Professional

with Service Pack 2 .

n Minimum 933 MHz processor (2 GHz is recommended) .

n Minimum 512 MB RAM (1 GB is recommended) .

n 18 GB of free disk space for installation .

n 1 GB of free disk space on system disk .

n DVD-ROM drive .

A trial version of Windows Embedded CE can be obtained from a local distributor of embed-
ded Microsoft systems; it can also be ordered or downloaded from the Microsoft Web site .

Windows Embedded CE installation instructions are included in the setup CD supplied with
the software . You can also use step-by-step installation instructions in Chapter 2, “Operating
System and Application Development Tools .”

 11

Chapter 2

Operating System and
Application Development Tools

Microsoft Windows Embedded CE includes a set of tools to assist with the design and config-
uration of operating system (OS) images, as well as the development of drivers, services, and
applications . Platform Builder for Windows Embedded CE 6 .0 is a plug-in for Microsoft Visual
Studio 2005 . Windows Embedded CE includes a version of Visual Studio 2005 Professional
and the Platform Builder toolset . During Platform Builder installation, Platform Builder’s Help
is integrated with Visual Studio’s Help .

Using the popular Visual Studio development suite as a base for the Windows Embedded
CE 6 .0 development toolset makes it possible to substantially increase the ease of image
development under Windows Embedded CE . Visual Studio includes helpful features such as
Microsoft IntelliSense auto-complete, syntax highlighting, the graphic registry editor, the sys-
tem image viewer, and many others . In addition to the development tools, Platform Builder
also includes numerous command-prompt utilities that assist with certain tasks during the
development of plug-in devices . In subsequent chapters, I cover the core toolset and some of
the additional utilities in more detail .

Installing Visual Studio 2005
Because Windows Embedded CE development tools are an addition to Visual Studio 2005,
setup should begin with the installation of Visual Studio 2005 . After you insert the distribu-
tion DVD into the DVD drive with the Auto-Play option enabled, the Visual Studio 2005 in-
stallation screen appears, as shown in Figure 2–1 .

12 Chapter 2 Operating System and Application Development Tools

FIguRE 2–1 Visual Studio 2005 installation screen

The only available option is Install Visual Studio 2005 . After you click this option, the Welcome
to the Microsoft Visual Studio 2005 Installation wizard screen appears, as shown in Figure 2–2 .

FIguRE 2–2 Welcome to the Microsoft Visual Studio 2005 Installation wizard screen

Click Next and read the terms and conditions . If you agree, select I accept the terms of the
license agreement and enter the license key, as shown in Figure 2–3 .

 Installing Visual Studio 2005 13

FIguRE 2–3 License key entry screen

The Microsoft Visual Studio 2005 Setup wizard prompts you to select the installation type:
Default, Full, or Custom . Choose Default, as shown in Figure 2–4 .

FIguRE 2–4 Options page

Click the Install button and wait for the setup routine to finish, as shown in Figure 2–5 .

14 Chapter 2 Operating System and Application Development Tools

FIguRE 2–5 Setup routine progress

After the installation completes, a screen appears indicating that the Visual Studio setup
completed, as shown in Figure 2–6 . Click Finish .

FIguRE 2–6 Setup completion

 Installing Visual Studio 2005 15

After a while, a Setup Menu screen appears with links to all setup options enabled, as shown
in Figure 2–7 .

FIguRE 2–7 Setup options

You must install the product documentation . Click Install Product Documentation . After you
click this option, a Welcome to the Setup wizard for MSDN Library screen appears, as shown
in Figure 2–8 .

FIguRE 2–8 Setup wizard

Click Next . The license agreement screen appears, as shown in Figure 2–9 .

16 Chapter 2 Operating System and Application Development Tools

FIguRE 2–9 License agreement screen

Read the license agreement . If you agree, select I accept the terms in the license agreement
and click Next to bring up the Customer Information screen, as shown in Figure 2–10 .

FIguRE 2–10 Customer Information screen

Enter your information and click Next to bring up a selection screen listing three setup types:
Full, Custom, and Minimum . Choose the setup option selected by default (Full), as shown in
Figure 2–11 .

 Installing Visual Studio 2005 17

FIguRE 2–11 Setup Type screen

Click Next . A screen prompting a selection of the setup files’ location appears, as shown in
Figure 2–12 .

FIguRE 2–12 Destination folder selection

Accept the default location and click Next .

18 Chapter 2 Operating System and Application Development Tools

FIguRE 2–13 Ready to Install the Program screen

The Ready to Install the Program screen appears, as shown in Figure 2–13 . Click Install and
wait until the installation process completes . After setup completes, a screen indicating that
 installation has been successfully completed appears, as shown in Figure 2–14 . Click Finish .

FIguRE 2–14 Setup Completed screen

After a while, a setup welcome screen appears with all setup options enabled . Click Exit . In
order to use the enhancements available in Service Pack 1 for .NET Compact Framework 2 .0,
it is necessary to install an update for Visual Studio 2005 . This update can be downloaded
directly from: www .microsoft .com/downloads/details .aspx?familyid=7BEFD787-9B5E-40C6-
8D10-D3A43E5856B2, or you can search the list of available updates from the Microsoft Web

 Installing Visual Studio 2005 19

site . Double-click the downloaded NETCFSetupv2 .msp file to launch the update process . A
setup welcome screen appears, as shown in Figure 2–15 .

FIguRE 2–15 Patch welcome screen

Click Next . The license agreement screen appears, as shown in Figure 2–16 .

FIguRE 2–16 License agreement selection

Read the license agreement . If you agree, select I accept the terms in the license agreement
and click Next . A window appears, as shown in Figure 2–17, indicating that the Setup wizard
is ready to begin the installation .

20 Chapter 2 Operating System and Application Development Tools

FIguRE 2–17 Ready-to-install screen

Click Patch and wait until setup completes . After setup completes, a screen appears
 indicating that the installation has finished . Click Finish .

Installing the Platform Builder Toolkit
After you insert the distribution DVD into the DVD drive with the Auto-Play option enabled,
the Platform Builder Setup wizard screen appears, as shown in Figure 2–18 .

FIguRE 2–18 Platform Builder Setup wizard screen

 Installing the Platform Builder Toolkit 21

Click Next . A product key screen appears, as shown in Figure 2–19 .

FIguRE 2–19 Customer Information screen

Enter the product key and click Next . The license agreement screen appears, as shown in
Figure 2–20 .

FIguRE 2–20 License agreement screen

Read the license agreement . If you agree, select I accept the terms in the license agreement
and click Next . A screen prompting a selection of installation features appears, as shown in
Figure 2–21 .

22 Chapter 2 Operating System and Application Development Tools

FIguRE 2–21 Installation directory screen

In addition, choose the Shared Source feature and support for x86 platform, and click Next .
The license agreement about the Shared Source screen appears, as shown in Figure 2–22 .

FIguRE 2–22 Shared Source license agreement screen

 Installing the Platform Builder Toolkit 23

Read the license agreement . If you agree, select I accept the terms in the license agreement
and click Next . A screen appears, as shown in Figure 2–23, indicating that the Setup wizard is
ready to begin the installation .

FIguRE 2–23 Ready to Install screen

Click Install and wait until the setup completes . After the setup completes, a screen appears
indicating that the installation has finished . Click Finish . The Windows Embedded CE 6 .0
 toolkit has been installed successfully . Launch the previously installed Visual Studio 2005,
which brings up a selection of environment settings, as shown in Figure 2–24 .

FIguRE 2–24 Default environment settings selection

24 Chapter 2 Operating System and Application Development Tools

Select Platform Builder Development Settings and click Start Visual Studio . The current
 settings will be reset to the default Platform Builder environment settings .

Installing updates
To ensure that the application developer tools included with Platform Builder are work-
ing properly, it is necessary to install Visual Studio 2005 Service Pack 1 . This update can be
downloaded directly from http://msdn2 .microsoft .com/en-us/vstudio/bb265237 .aspx, or you
can search the list of available updates from the Microsoft Web site . Before you start the
 installation process, make sure you have 3 GB of available free space on your hard drive . Be
prepared to wait . The setup process can take a considerably long time .

Double-click the downloaded file VS80sp1-KB926601-X86-ENU .exe to launch the update
process . After a while, a screen appears indicating that extraction is in progress, as shown in
Figure 2–25 .

FIguRE 2–25 Extraction progress

After a while, a Preparing to Install window appears . Wait until the installation process has
successfully transitioned to the next stage . A window appears, as shown in Figure 2–26,
 asking you to confirm that you want to install Service Pack 1 for Visual Studio 2005 .

FIguRE 2–26 Confirmation dialog window

Click OK to continue installation . A license agreement screen appears, as shown in
Figure 2–27 .

 Installing Updates 25

FIguRE 2–27 License agreement

Read the license agreement . If you agree, click I accept . The setup process continues . Wait
for the dialog window indicating that setup has been successfully completed, as shown in
Figure 2–28 .

FIguRE 2–28 Installation completion dialog window

Click OK . The Visual Studio 2005 configuration screen appears . Wait until configuration
 completes . Service Pack 1 for Visual Studio 2005 has been installed .

Now it is necessary to install an update for the development tools for Service Pack 1, which
adds a CEDebugX toolkit for multithreaded programming, support for eXDI 2 .0 hardware
 debugging, and support for Remote Tools Framework, which enables you to create custom-
ized remote toolkits . Service Pack 1 for Platform Builder for CE 6 .0 is available from:
www .microsoft .com/downloads/details .aspx?FamilyId=BF0DC0E3-8575-4860-A8E3-
290ADF242678

Finish working with Visual Studio 2005 and launch the setup process for Service Pack 1 for
Platform Builder for CE 6 .0 . To launch the installation process, double-click the setup file,

26 Chapter 2 Operating System and Application Development Tools

Windows Embedded CE 6 .0 Platform Builder Service Pack 1 .msi . After a while, the first Setup
wizard screen appears, as shown in Figure 2–29 .

FIguRE 2–29 Welcome screen

Click Next . The license agreement screen appears, as shown in Figure 2–30 .

FIguRE 2–30 License agreement screen

Read the license agreement . If you agree, select I accept the terms in the license agreement
and click Next . A Ready to Install screen appears, as shown in Figure 2–31 .

 Installing Updates 27

FIguRE 2–31 Ready to Install screen

Click Install to launch the setup process . A screen appears showing the setup progress . Next,
the following Setup wizard screen appears, as shown in Figure 2–32 .

FIguRE 2–32 Installation progress

Wait until setup completes . This may take 10-20 minutes depending on the processor speed .
A screen appears indicating that the installation process has been completed, as shown in
Figure 2–33 .

28 Chapter 2 Operating System and Application Development Tools

FIguRE 2–33 Installation completion screen

Click Finish . Installation of the Service Pack for Platform Builder for CE 6 .0 is now complete .

You must also install the developer toolkit for Windows Embedded CE 6 .0 R2 . A trial version
is available at www .microsoft .com/downloads/details .aspx?FamilyID=f41fc7c1-f0f4-4fd6-
9366-b61e0ab59565&DisplayLang=en .

FIguRE 2–34 Setup welcome screen

 Installing Updates 29

The installation process is somewhat different if you install from a setup DVD/CD rather than
from the Web . The Web installation verifies the currently installed version of the developer
toolkit, downloads a special program, and launches the setup routine . With the setup DVD/
CD installation, once the disk is inserted into the DVD/CD drive, a browser window opens,
prompting you to select an update or launch the Windows Embedded CE R2 setup process,
as shown in Figure 2–34 .

Click Next . The license agreement screen appears, as shown in Figure 2–35 .

FIguRE 2–35 License agreement screen

Read the license agreement . If you agree, select I accept the terms in the license agreement
and click Next . A screen appears prompting you to select board support package (BSP) items
to install, as shown in Figure 2–36 .

30 Chapter 2 Operating System and Application Development Tools

FIguRE 2–36 BSP selection

Choose the BSPs you want to install and click Next . A screen appears indicating that packages
are ready to install, as shown in Figure 2–37 .

FIguRE 2–37 Ready to Install screen

 Installing Updates 31

Click Install to launch the setup process and to bring up a screen showing the setup progress .
Wait until setup completes . This may take 20-30 minutes depending on the processor speed .
A screen appears indicating that the installation process has been completed, as shown in
Figure 2–38 .

FIguRE 2–38 Installation completion screen

Click Finish . Installation of Windows Embedded CE 6 .0 R2 is now complete . Note that
Windows Embedded CE 6 .0 R2 contains all upgrades for Windows Embedded CE 6 .0 that
were released prior to Windows Embedded CE 6 .0 R2 . After Windows Embedded CE 6 .0 R2
has been installed, you need to install all the necessary updates that have been released
since Windows Embedded CE 6 .0 R2 .

32 Chapter 2 Operating System and Application Development Tools

Development Tools Interface

Main Views, Windows, and Menus of the Design Interface
After a new OS design project has been created, the main window of Visual Studio 2005 ap-
pears, as shown in Figure 2–39 .

FIguRE 2–39 Visual Studio 2005 main window

The upper portion of the screen contains the menu and a set of toolbars . The selection of
toolbars changes depending on the current environment mode: code editing mode, debug-
ging mode, and so on . After Platform Builder for CE 6 .0 has been installed, the standard tool-
bars have all available options enabled, and a new Target toolbar appears, as shown in Figure
2–40 (lower-right-hand corner), which enables you to choose a target device to be loaded, to
plug or unplug a device, as well as to open Target Control or Connectivity Options .

FIguRE 2–40 Toolbar options

 Development Tools Interface 33

The left section of the screen contains a workspace with several views . By default, it has the
following three views selected: Solution Explorer, Catalog Items View, and Class View . The
right section of the screen contains the source-code editor . The bottom section contains
 various windows, including the Output window (Windows CE Debug and Windows CE Log),
Code Definition window, and Call Browser .

The new tools support IntelliSense for the Windows Embedded CE source code and for ap-
plications, as well as for configuring system files . Platform Builder also includes a graphical
interface for the registry editor and .bin file editor . The graphical registry editor is opened
automatically when you double-click the registry configuration file in the design window, as
shown in Figure 2–41 .

FIguRE 2–41 Graphical registry editor

In order to open a .bin file for viewing or partial editing, choose Open from the File menu .
In the menu that appears, choose File to display a standard Windows dialog window for
 opening files . From there, choose the .bin file and click Open . Figure 2-42 shows the content
of the NK .bin file .

34 Chapter 2 Operating System and Application Development Tools

FIguRE 2–42 .Bin file content

If you open the .bin file as a project (Project/Solution from submenu Open), the image can
be loaded onto a device and debugged . Now let us take a closer look at each of the views of
the main workspace area .

In the Solution Explorer view, you can see a Windows Embedded CE catalog hierarchy, con-
figuration files, OS design subprojects, and Software Development Kit (SDK) . The Solution
Explorer view also shows the Favorites folder, where you can add links to frequently used
parts of the hierarchy of the Windows Embedded CE source code, as shown in Figure 2–43 .

 Development Tools Interface 35

FIguRE 2–43 Windows Embedded CE catalog hierarchy

Once you have selected the node from the Solution Explorer, you can perform the following
actions, as shown in Figure 2–44:

n Build BSP, OS components, subprojects, and so on (Build, Rebuild, Sysgen, Build and
Sysgen, Rebuild and Clean Sysgen) .

n Open Dirs or Sources file (Open), depending on the type of selected node .

n Launch the graphic editor of the Sources or Dirs file (Properties), depending on the
type of selected node .

n Open Build Window .

n Exclude from Build .

n Show in Favorites .

n Open the project directory by using Windows Explorer .

36 Chapter 2 Operating System and Application Development Tools

FIguRE 2–44 Possible actions

The Catalog Items View, as shown in Figure 2–45, enables you to add and remove options,
modules, and components from the operating system design .

FIguRE 2–45 Catalog Items View

 Development Tools Interface 37

Empty check boxes in the Catalog Items View mean that those options have not been
 selected . Selected check boxes indicate that the options have been chosen; filled out
boxes mean that the options have been automatically added by the system to resolve
dependencies .

You can filter a view for User-selected Catalog Items Only, User-selected Catalog Items and
Dependencies, and All Catalog Items in Catalog . You can also do a catalog search and launch
a view update, as shown in Figure 2–46 .

FIguRE 2–46 Filter options

Class View has convenient navigation within the subprojects’ source code, as shown in Figure
2–47 .

FIguRE 2–47 Class View

38 Chapter 2 Operating System and Application Development Tools

Let us take a closer look at the utilities available in the bottom section of the window .
The Call Browser enables you to quickly determine what functions are calling a particular
 function, as shown in Figure 2–48 . It also has a search capability .

FIguRE 2–48 Call Browser

The Code Definition window shows the definition of the function code selected in the editor,
as shown in Figure 2–49 .

FIguRE 2–49 Code Definition Window

You can add additional windows with utilities and views to your design environment . To do
that, select them from the View menu of Visual Studio 2005, as shown in Figure 2–50 .

Let us look at the options available from the main menu . We shall discuss only those options
that are specific to Windows Embedded CE . The Project submenu, as shown in Figure 2–51,
enables you to add new and existing subprojects to your OS design . It enables you to set
subproject build order, add new and existing SDKs, and access the properties of the objects
selected in the Solution Explorer (the last item on the menu that ends in Properties) .

 Development Tools Interface 39

FIguRE 2–50 View menu

FIguRE 2–51 Project submenu

If the Solution Explorer has the root node of the OS design selected, then selecting
Properties from the Project submenu brings up the OS design properties, as shown in
Figure 2–52 .

Common Properties are those that apply to the entire design environment . They have only
one setting, and that is to specify the OS build tree where Windows Embedded CE 6 .0 is in-
stalled . When Configuration Properties is selected, a drop-down list appears where you can
choose a configuration type for viewing or editing properties: Active, Debug, Release, or All
Configurations .

40 Chapter 2 Operating System and Application Development Tools

FIguRE 2–52 OS design properties

FIguRE 2–53 OS design configuration properties

Now let’s look at Configuration Properties . Under General settings, you can set the release
directory to which the built modules are copied, the build type (Debug or Release), and the
target file name for the image that will be used by the debugger, as shown in Figure 2–53 .

 Development Tools Interface 41

The Locale setting enables you to specify the supported locales and codepages . You can set
a default locale, check Localize the build, or check Strict localization checking in the build, as
shown in Figure 2–54 .

FIguRE 2–54 OS design locale options

Build Options include settings for the variables used most frequently to control the build
 process, as shown in Figure 2–55 .

FIguRE 2–55 OS design build options

42 Chapter 2 Operating System and Application Development Tools

Table 2–1 provides the variable names and values .

TABlE 2–1 Variable names.

Build Setting Variable Value (if selected)

Build tracked events in RAM IMGOSCAPTURE Adds the OSCapture .exe module to the
 image . During the load, the OS mod-
ule starts writing system events into the
 random access memory (RAM) .

Enable eboot space in
memory

IMGEBOOT Reserves eboot space in memory . Enables
the module to preserve the data that can
be read by the system during the load .

Enable event tracking during
boot

IMGCELOGENABLE Adds CELog .dll to the image and initializes
the system event collection when it loads .

Enable hardware-assisted
 debugging support

IMGHDSTUB Enables hardware debugging support .

Enable Kernel Debugger IMGNODEBUGGER Includes kernel debugging support in the
image .

Enable KITL IMGNOKITL Includes support for Kernel Independent
Transport Layer (KITL) .

Enable profiling IMGPROFILER Includes kernel profiling .

Enable ship build WINCESHIP OS images built with this flag output no
debugging messages .

Flush tracked events to
 release directory

IMGAUTOFLUSH Enables flushing of event logging to the
release directory .

Run-time image can be
larger than 32 MB

IMGRAM64 Enables support for a run-time image
 larger than 32 megabytes (MB) .

Use xcopy instead of links
to populate release directory

BUILDREL_USE_COPY Copies files to the release directory instead
of creating hard links .

Write run-time image to
flash memory

IMGFLASH Enables writing of the run-time image to
flash memory after download .

The following environment variables enable you to fine-tune build settings by specifying
 additional environment variables, as shown in Figure 2–56 .

 Development Tools Interface 43

FIguRE 2–56 OS design additional environment variables specification

The following settings enable you to perform custom build actions during certain build
 stages, as shown in Figure 2–57 .

FIguRE 2–57 OS design custom build actions

The last option is Subproject Image Settings for the OS design, as shown in Figure 2–58 .
Double-clicking a subproject name opens a dialog window where you can choose to ex-
clude a subproject from the build (Exclude from build), exclude it from the image (Exclude

44 Chapter 2 Operating System and Application Development Tools

from image), and, finally, whether you want to always build and link as debug . No option is
 selected by default .

FIguRE 2–58 OS design Subproject Image Settings

Let’s proceed to the next menu item, which is Build, as shown in Figure 2–59 . This submenu
contains actions that pertain to the build of the operating system design, subprojects, and
SDK .

FIguRE 2–59 Build menu

 Development Tools Interface 45

Table 2–2 provides action descriptions for each menu item .

TABlE 2–2 Build menu item descriptions.

Menu Item Action

Build Solution

Build <OS design name>

Builds the OS and all projects not excluded from the build . Also
 creates the run-time image .

Rebuild Solution

Rebuild <OS design name>

Deletes previously created OS modules . Also builds the OS and
all projects not excluded from the build and creates the run-time
 image .

Clean Solution

Clean <OS design name>

Deletes previously created OS modules .

Advanced Build Commands Provides access to advanced commands .

Build All Subprojects Builds all subprojects .

Rebuild All Subprojects Deletes previously created binary code, builds all subprojects, and
creates the run-time image .

Build All SDKs Launches building of SDKs included in the current OS design project .

Copy Files to Release
Directory

Copies OS files to the release directory .

Make Run-Time Image Builds the run-time image .

Open Release Directory in
Build Window

Opens the command line of the release directory of the current build
of the OS design and installs all necessary environment variables for
the OS build from the command line .

Global Build Settings Provides access to the OS build settings when launched from the
Build menu .

Targeted Build Settings Enables you to configure settings for the target BSP and project
builds launched from the Solution Explorer view .

Batch Build Enables you to edit and select several configurations for the build .

Configuration Manager Enables you to edit and set active configuration for the build .

The Advanced Build Commands submenu provides access to advanced build actions, as
shown in Figure 2–60 .

FIguRE 2–60 Advanced Build Commands submenu

Table 2–3 provides action descriptions for the Advanced Build Commands menu actions .

46 Chapter 2 Operating System and Application Development Tools

TABlE 2–3 Advanced Build Commands menu actions.

Menu Item Action

Sysgen Same as Build Solution .

Clean Sysgen Same as Rebuild Solution .

Build and Sysgen Builds components from the source code supplied by Microsoft .
After that, same as Build Solution . NOT RECOMMENDED .

Rebuild and Clean Sysgen Removes all previously built OS components . After that, build
 components from the source code supplied by Microsoft . After that,
same as Build Solution . NOT RECOMMENDED .

Build Current BSP and
Subprojects

Builds the current BSP and subprojects . To successfully complete the
command, you must previously build an OS (by running Sysgen) .

Rebuild Current BSP and
Subprojects

Deletes the previously created BSP modules and subprojects and
rebuilds them .

The Global Build Settings submenu enables you to choose the settings related to the image
build by using the Build menu actions, including Advanced Build Commands, as shown in
Figure 2–61 .

FIguRE 2–61 Global Build Settings submenu

Table 2–4 provides the description of Global Build Settings .

TABlE 2–4 Description of settings.

Menu Item Action

Copy Files to Release
Directory After Build

Files are copied to the release directory after build .

Make Run-Time Image
After Build

Makes the run-time image from OS modules in the release directory .

The Targeted Build Settings submenu, as shown in Figure 2–62, enables you to choose
 settings for the BSP, OS components, subprojects, and so on, for the target build launched
from the Solution Explorer view .

FIguRE 2–62 Targeted Build Settings submenu

Table 2–5 provides the description of Targeted Build Settings .

 Development Tools Interface 47

TABlE 2–5 Description of settings.

Menu Item Action

Make Run-Time Image
After Build

Makes the run-time image from OS modules in the release directory .

If the OS build is launched, most of the Build menu items become unavailable and a new
menu item appears (Cancel) that enables you to terminate the current build, as shown in
Figure 2–63 .

FIguRE 2–63 Menu during build

Let us proceed to the Target menu, as shown in Figure 2–64 . It lists actions for working with
a device .

FIguRE 2–64 Target menu

48 Chapter 2 Operating System and Application Development Tools

Table 2–6 provides action descriptions for menu items .

TABlE 2–6 Description of settings.

Menu Item Action

Attach Device Attach a device . Depending on the settings, download/flash the OS
image .

Detach Device Detach a device .

Reset Device Reset a device . This action has to be supported by the device .

Target Control Open the control window of the target device—the client part of CE
Shell (CESH) . This enables you to receive information about practical-
ly all aspects of the device, as well as to launch and stop programs .

Run Programs Runs a program on the target device .

CE Debug Zones Establishes debug zones for loaded modules .

Connectivity Options Brings up a dialog box for connectivity options .

Debug Message Options Brings up a dialog box for debug message options .

Release Directory Module Brings up a dialog box for configuring modules that always load
from the release directory .

Remote Tools Remote Tools submenu .

File Viewer File Viewer utility .

Heap Walker Heap Walker utility .

Zoom Utility for taking screen shots with zoom capability .

Process Viewer Process Viewer utility .

Registry Editor Registry Editor utility .

System Information Utility for displaying system information .

Performance Monitor Utility for monitoring performance .

Spy Utility for displaying window messages .

Kernel Tracker Utility for OS execution monitoring, such as threads, synchronization
objects, interrupts, and so on .

Call Profiler Utility for remote call profiling .

Let us take a closer look at each of the menu items, except for the Remote Tools submenu,
which we will discuss in more detail later .

n Attach/Detach/Reset Device A device can be selected from the Device pane . By de-
fault, it is the last device selected in the Connectivity Options dialog box .

n Target Control is a view of the control window for the current device to which the
design tools are currently attached . To enable this utility, the image needs to include
Core OS\CEBASE\Core OS Services\Kernel Functionality\Target Control Support (Shell .
exe) . The window that appears lists various debugging actions . This is one of the
 primary debugging utilities . Some of the system information still can be obtained only
through this utility .

 Development Tools Interface 49

n Run Programs This opens a dialog window that enables you to select a program to
launch the device, as shown in Figure 2–65 . You will be able to launch programs stored
in the image, as well as those in the release directory of the operating system’s image .

FIguRE 2–65 Run Program window

n CE Debug Zones This menu item enables you to view the control window for debug
zones . You may select a loaded module and specify which debug zones you want to
be active . The debug zones provide an opportunity to receive debugging informa-
tion without interrupting the operating system/module’s operation, as shown in
Figure 2–66 .

FIguRE 2–66 Debug zones

n Connectivity Options This menu item brings up a dialog window that lists op-
tions that enable you to connect with a device . This dialog window contains several

50 Chapter 2 Operating System and Application Development Tools

 subwindows for performing various tasks . By default, it opens a window with target
 device connectivity options, as shown in Figure 2–67 .

FIguRE 2–67 Connectivity options

When the dialog window appears, it has a Target Device drop-down box with current device
settings . If needed, you may choose any other settings or create new ones (use the Add
Device option) . The Download drop-down box enables you to choose a service that is used
for loading the image onto a device . If the selected service enables you to configure its set-
tings, once this service is chosen, the Settings button becomes enabled . Clicking this button
brings up a Settings dialog box . The Transport drop-down box enables you to choose the
kernel-level transport by which the target device connects to the developer workstation . If
the selected transport enables you to configure its settings, once this transport is chosen,
the Settings button becomes enabled . Clicking this button brings up a Settings dialog box .
From the drop-down Debugger box, you may select the debugger . If the selected debugger
enables you to configure additional settings, once that debugger is selected, the Settings
 option becomes enabled . Selecting this option opens up a Settings dialog window .

The Core Service Settings window, as shown in Figure 2–68, contains information about the
image of the operating system associated with the device . It enables you to configure the
way the image is loaded onto the device and some of the KITL settings .

 Development Tools Interface 51

FIguRE 2–68 Core Service Settings window

The Service Status window, as shown in Figure 2–69, provides a view of the current status of
the services associated with the load, debugging, transport, and so on .

FIguRE 2–69 Service status

The Add Device window, as shown in Figure 2–70, enables to add you a new configuration to
connectivity settings, or, to use Platform Builder’s terminology, to add a device .

52 Chapter 2 Operating System and Application Development Tools

FIguRE 2–70 Add Device window

The Delete Device window enables you to remove a previously created device, as shown in
Figure 2–71 .

FIguRE 2–71 Delete Device window

The Debug Message Options dialog box enables you to set the format and the output
 method for debugging messages . The Release Directory Modules dialog box, as shown

 Development Tools Interface 53

in Figure 2–72, enables you to tell the debugger what modules must be loaded from the
 image’s release directory . You can debug and rebuild a driver without having to constantly
rebuild the system image .

FIguRE 2–72 Release Directory Modules dialog box

Clicking the Add button brings up a list of modules from the release directory . Figure 2–73
shows only a partial list .

FIguRE 2–73 Available modules

Let us proceed to the next menu . The Tools menu contains several CE utilities: Clone BSP;
License Run-time Image (not available in the trial version); Run-time License Assessment Tool;
and CE Update Check .

The Debug menu is enhanced to include new actions that provide the developer with
 additional opportunities for debugging, specifically:

n Symbol Search Path .

n Windows CE Debugger Extensions .

n Go To Location .

n Capture Dump File .

54 Chapter 2 Operating System and Application Development Tools

FIguRE 2–74 Debug options

The Windows submenu, as shown in Figure 2–74, provides access to various utilities that
 enable you to collect information about the connected device, including:

n Call Stack .

n Threads .

n Modules .

n Processes .

n Autos .

n Watch .

n Memory submenu .

n Disassembly .

n Registers .

n List Nearest Symbol .

n Advanced Memory .

The Debug menu actions described above become available once the debugger has been
connected to the device . In concluding the description of the design interface, it is necessary
to point out that at the time of this writing, Windows Embedded CE 6 .0 projects were not
 supported by Team Foundation System .

 Remote Utilities 55

Remote utilities
This section covers the following remote utilities for Windows Embedded CE 6 .0:

n File Viewer .

n Heap Walker .

n Zoom .

n Process Viewer .

n Registry Editor .

n System Information .

n Performance Monitor .

n Spy .

n Kernel Tracker .

n Call Profiler .

Note that in order for the Zoom and Spy utilities to work correctly, the image must contain
the following components: Core OS\CEBASE\Shell and User Interface\Graphics, Windowing
and Events\Minimal GWES Configuration, Core OS\CEBASE\Shell and User Interface\Graphics,
and Windowing and Events\ Minimal GDI Configuration . The Call Profiler utility requires
that the image contain Core OS\CEBASE\International\National Language Support (NLS) or
Core OS\CEBASE\International\English (US) National Language Support only with Core OS\
CEBASE\Application and Service Development\C Libraries and Runtimes\ Standard String
Functions - ASCII (corestra) .

File Viewer
The File Viewer utility enables you to view the contents of the device file system, import
files from the device, export files to the device, browse the properties of files and directo-
ries, create directories, and rename files and directories stored on the device . To launch this
utility, choose Target from the main menu, then select Remote Tools and, in the menu that
appears, choose File Viewer . The main program window appears . In the upper section of
the screen, there is a dialog box for the target device . If the device has an established active
connection with Platform Builder, you may skip all configuration settings and choose Default
Device, which uses the default settings of the most recently connected device, as shown in
Figure 2–75 .

56 Chapter 2 Operating System and Application Development Tools

FIguRE 2–75 Windows Embedded CE Remote File Viewer

If it is necessary to add additional settings or to add a new device, you can click Cancel and
add new settings to connect to a device . These settings are configured the same way from all
 remote utilities .

To set the configuration settings, choose Configure Windows CE Platform Manager in the
Connection menu . A dialog box appears, as shown in Figure 2–76 .

FIguRE 2–76 Configuration dialog box

This dialog box enables the addition of new settings, or, in Platform Builder terminology,
to Add Device, Delete, view Properties, or see About information . Clicking the Add Device
 button adds a new device to the list . You can rename it right away . After the device has been
added, you can select it from the list and edit its properties, as shown in Figure 2–77 .

 Remote Utilities 57

FIguRE 2–77 Device properties

Transport is used for communicating on the application level between the device and the
remote utility . The program ships with support for the following transports:

n ActiveSync .

n KITL .

n Transmission Control Protocol/Internet Protocol (TCP/IP) .

The use of ActiveSync as a transport mechanism requires that the developer’s workstation
and the device both support ActiveSync . KITL transport uses the same KITL connection as the
Kernel Debugger, and it requires that the device support KITL . TCP/IP transport uses TCP/IP
protocol to communicate with the device, and the device has to support the network proto-
col . If needed, you can additionally configure transport properties by clicking Configure .

The startup server is responsible for copying files needed for Platform Manager to the de-
vice, running those files, utilizing the transport, and establishing a connection between the
developer workstation and the target device . The program includes the following startup
server types:

n ActiveSync Startup .

n CESH Startup .

n KITL Startup .

n Manual Startup .

The ActiveSync startup server uses ActiveSync for copying and launching operations on
the target device; CESH and KITL startup servers use Target Control Service (Shell .exe) . The
Manual startup server brings up a dialog box with a list of files that must be copied to the
device as well as the program that needs to be run after copying completes in order to
 connect to the developer’s workstation .

58 Chapter 2 Operating System and Application Development Tools

After the necessary transport and the startup server have been selected, you can test the
 device connection by pressing the Test button . A dialog window appears showing the
 process of being connected to a device, as shown in Figure 2–78 .

FIguRE 2–78 Testing device connection

If connection to the device has been successfully established, a dialog box appears with a
Connection to device established message and an OK button, as shown in Figure 2–79 .

FIguRE 2–79 Successful device connection

To connect to a device, choose Connection, and then choose Add Connection . A dialog box
appears, similar to the one that shows up when the program starts . Choose a device and click
OK . A dialog box appears showing the progress of being connected to the device . After a
successful connection, you can see the catalog hierarchy in the left pane and the currently
selected catalog in the right pane, as shown in Figure 2–80 .

 Remote Utilities 59

FIguRE 2–80 Windows Embedded CE Remote File Viewer—connected

By using the menu and the toolbox, you may perform the following actions:

n Browse the device file system .

n Import files from the device .

n Export files to the device .

n View properties of files and directories .

n Create directories .

n Rename files and directories in the device .

Heap Walker
The Heap Walker utility enables you to view process heaps, their identifiers, and flags, as
well as the structure and the content of each heap . To launch this utility, choose Target from
the main menu, then Remote Tools and, in the menu that appears, choose Heap Walker . The
main program window appears . In the upper portion of the screen, there is a dialog box for
the target device . If the device has an established active connection with Platform Builder,
you may skip all configuration settings and choose Default Device, which uses the default
settings of the most recently connected device .

To configure additional settings or to add another device, click Cancel and configure the
 connection settings for the device . These settings are configured in the same way for all
 remote utilities . They were discussed in more detail in the “File Viewer” section .

60 Chapter 2 Operating System and Application Development Tools

To connect to a device, choose Connection, and then choose Connect to Device . A dialog
box appears, similar to the one that shows up when the program starts . Choose a device and
click OK . A dialog box appears showing the progress of being connected to the device . After
the connection has been successfully established, a list appears showing processes and their
heaps .

This utility may show three windows: Process_List, Heap_List, and Heap_Dump . After the
device has been connected, a window appears showing the process list and the heaps
 associated with each process, as shown in Figure 2–81 .

 FIguRE 2–81 Windows Embedded CE Remote Heap Walker process list

Double-clicking the heap opens a window that lists blocks of the heap memory and includes
information about their address, block size, and block flag (fixed or free), as shown in
Figure 2–82 .

 Remote Utilities 61

FIguRE 2–82 Windows Embedded CE Remote Heap Walker heap list

Double-clicking a block brings up a window showing the content of the selected heap’s
memory block, as shown in Figure 2–83 .

FIguRE 2–83 Windows Embedded CE Remote Heap Walker heap memory block

62 Chapter 2 Operating System and Application Development Tools

Zoom
The Zoom utility enables you to capture screen shots of the target device . To launch this util-
ity, choose Target from the main menu, then choose Remote Tools and, in the menu that ap-
pears, choose Zoom . The main program window appears . In the upper portion of the screen,
there is a dialog box for the target device . If the device has an established active connection
with Platform Builder, you may skip all configuration settings and choose Default Device,
which uses the default set connected device .

To configure additional settings or to add another device, click Cancel and configure the con-
nection settings for the device . These settings are configured in the same way for all remote
utilities . They were discussed in more detail in the “File Viewer” section .

To connect to a device, choose Connection, and then Connect to Device . A dialog box ap-
pears, similar to the one that shows up when the program starts . Choose a device and click
OK . A dialog box appears showing the progress of being connected to the device . After the
connection has been successfully established, a screen shot of the current screen of the tar-
get device appears, as shown in Figure 2–84 .

FIguRE 2–84 Windows Embedded CE Remote Zoom-in

By using the menu, you may zoom in on or zoom out on the image (View, and then Zoom
In/Zoom Out), open the image of the current device screen in a new window (File, and then
New Bitmap), or refresh the image in the current window (Connection, and then Refresh) .
The resulting image can be copied to the exchange buffer (Edit, and then Copy All/Copy
Window), saved as a file (File, and then Save As), or printed out (File, and then Print) .

 Remote Utilities 63

Process Viewer
The Process Viewer utility enables you to gather information about the processes launched in
the target device, the process threads, and modules loaded into the processes . To launch this
utility, choose Target from the main menu, then choose Remote Tools and, in the menu that
appears, choose Process Viewer . The main program window appears . In the upper portion of
the screen, there is a dialog box for the target device . If the device has an established active
connection with Platform Builder, you may skip all configuration settings and choose Default
Device, which uses the default settings of the most recently connected device .

To configure additional settings or to add another device, click the Cancel button and
 configure the connection settings for the device . These settings are configured in the same
way for all remote utilities . They were discussed in more detail in the “File Viewer” section .

To connect to a device, choose Connection, and then Connect to Device . A dialog box ap-
pears, similar to the one that shows up when the program starts . Choose a device and click
OK . A dialog box appears showing the progress of being connected to the device . After the
connection has been successfully established, the information about the processes launched
in the device appears, as shown in Figure 2–85 .

FIguRE 2–85 Windows Embedded CE Remote Process Viewer

When you select a process in the upper section of the screen, the middle section shows
 information about the process threads; the bottom section shows information about the

64 Chapter 2 Operating System and Application Development Tools

modules loaded in the processes . Clicking the button with a red cross on the main pane
enables you to stop a process . To refresh device information, select Connection and then
Refresh from the utility’s main menu .

Registry Editor
The Registry Editor utility enables you to view and edit the registry of the target system . To
launch this utility, choose Target from the main menu, then choose Remote Tools, and in the
menu that appears, choose Registry Editor . The main program window appears . In the up-
per portion of the screen, there is a dialog box for the device you want to connect to . If the
device has an established active connection with Platform Builder, you may skip all configura-
tion settings and choose Default Device, which uses the default settings of the most recently
connected device .

To configure additional settings or to add another device, click the Cancel button and config-
ure the connection settings for the device . These settings are configured in the same way for
all remote utilities . They were discussed in more detail in the “File Viewer” section .

To connect to a device, choose Connection, and then Add Connection . A dialog box appears,
similar to the one that shows up when the program starts . Choose a device and click OK . A
dialog box appears showing the progress of being connected to the device . After the con-
nection has been successfully established, the left pane displays a hierarchical tree of the
registry of the desktop machine and the target device, and the right pane displays the value
of the registry keys chosen in the left pane, as shown in Figure 2–86 .

FIguRE 2–86 Windows Embedded CE Remote Registry Editor

 Remote Utilities 65

This utility is similar to its desktop version of the registry viewer, and it enables you to perform
all registry actions, including exporting registry files . The registry actions are accessible from
the context menu (right-click mouse menu) and from the main utility’s pane . To refresh device
information, choose Connection and then choose Refresh from the utility’s main menu .

System Information
The System Information utility enables you to browse system information about the device,
including memory, device storage, and metrics . To launch this utility, choose Target from
the main menu, then choose Remote Tools and, in the menu that appears, choose System
Information . The main program window appears . In the upper portion of the screen, there is a
dialog box for the device you want to connect to . If the device has an established active con-
nection with Platform Builder, you may skip all configuration settings and additionally choose
Default Device, which uses the default settings of the most recently connected device .

To configure additional settings or to add another device, click the Cancel button and
 configure the connection settings for the device . These settings are configured in the same
way for all remote utilities . They were discussed in more detail in the “File Viewer” section .

FIguRE 2–87 Windows Embedded CE Remote System Information

To connect to a device, choose Connection, and then Connect to Device . A dialog box
 appears, similar to the one that shows up when the program starts . Choose a device and
click OK . A dialog box appears showing the progress of being connected to the device . After
the connection has been successfully established, the left pane displays a hierarchical tree of
 system information, and the right pane displays information about the items chosen in the
left pane, as shown in Figure 2–87 .

66 Chapter 2 Operating System and Application Development Tools

Performance Monitor
The Performance Monitor utility enables you to track various performance indicators of the
target system . To launch this utility, choose Target from the main menu, then Remote Tools
and, in the menu that appears, choose Performance Monitor . The main program window
appears . In the upper portion of the screen, there is a dialog box for the target device . If the
device has an established active connection with Platform Builder, you may skip all configura-
tion settings and choose Default Device, which uses the default settings of the most recently
connected device .

To configure additional settings or to add another device, click the Cancel button and
 configure the connection settings for the device . These settings are configured in the same
way for all remote utilities . They were discussed in more detail in the “File Viewer” section .

To connect to a device, choose Connection, and then Connect to Device . A dialog box
 appears, similar to the one that shows up when the program starts . Choose a device and click
OK . A dialog box appears showing the progress of being connected to the device . After the
connection has been successfully established, the program starts copying the files that are
needed in order to monitor the performance of the target system . After copying and ini-
tialization of the remote part of the device are completed, the developer will have access to
the interface that is similar to an interface of the desktop version of Performance Monitor, as
shown in Figure 2–88 .

FIguRE 2–88 Windows Embedded CE Remote Performance Monitor

 Remote Utilities 67

Just like the desktop version, this utility enables you to represent data in several forms,
 including Chart, Alert, and Report, as well as to write information to a log . Views can be
 toggled from the main pane (the second group of the four buttons on the right-hand side) or
from the main menu (View) . You can add counters to each view . To add or remove a counter,
you can use the Edit menu and then the first item (Add to Chart, Add to Log, etc .) or the
main pane (the first button in the third button group on the left) .

Pressing the Add button brings up a dialog box showing a counter selection to add . The
 dialog boxes are slightly different depending on the selected view (Chat, Alerts, or Report) .

The utility can show the current target device information, as well as the information from a
log created previously by this utility . Developers may add their own counters to Performance
Monitor by creating special extension libraries .

Spy
The Spy utility enables you to browse open windows of the device and their properties . To
launch this utility, choose Target from the main menu, then Remote Tools and, in the menu
that appears, choose Spy . The main program window appears . In the upper portion of the
screen, there is a dialog box for the target device . If the device has an established active
 connection with Platform Builder, you may skip all configuration settings and choose Default
Device, which uses the default settings of the most recently connected device .

To configure additional settings or to add another device, click the Cancel button and
 configure the connection settings for the device . These settings are configured in the same
way for all remote utilities . They were discussed in more detail in the “File Viewer” section .

To connect to a device, choose Connection, and then Connect to Device . A dialog box
 appears, similar to the one that shows up when the program starts . Choose a device and click
OK . A dialog box appears showing the progress of being connected to the device . After the
connection has been successfully established, a window appears showing the hierarchical
tree of the system windows, as shown in Figure 2–89 .

68 Chapter 2 Operating System and Application Development Tools

FIguRE 2–89 Windows Embedded CE Remote Spy

Double-clicking a node of the hierarchical view displays a dialog box listing the properties of
the corresponding window, as shown in Figure 2–90 .

FIguRE 2–90 Window property screen

 Remote Utilities 69

Kernel Tracker
The Kernel Tracker utility enables you to watch the operations of the system and the
 applications in real time, including:

n All the processes, threads, and their interaction .

n System events and the threads that represent them .

n System interrupts (the image should include support for profiling) .

n System information .

Kernel Tracker also enables you to view the execution of the system and the application in
the target device dynamically from within . It provides effective solutions to the problems a
developer may be faced with including thread interaction analysis in a multithreaded appli-
cation and finding the root causes of the slow performance of a driver .

FIguRE 2–91 Windows Embedded CE Remote Kernel Tracker

To launch this utility, choose Target from the main menu, then Remote Tools and, in the menu
that appears, choose Kernel Tracker . The main program window appears . In the upper portion

70 Chapter 2 Operating System and Application Development Tools

of the screen, there is a dialog box for the target device . If the device has an established active
connection with Platform Builder, you may skip all configuration settings and choose Default
Device, which uses the default settings of the most recently connected device .

To configure additional settings or to add another device, click the Cancel button and
 configure the connection settings for the device . These settings are configured in the same
way for all remote utilities . They were discussed in more detail under the File Viewer utility .

To connect to a device, choose Connection, and then Connect to Device . A dialog box ap-
pears, similar to the one that shows up when the program starts . Choose a device and click
OK . A dialog box appears showing the progress of being connected to the device . After the
connection has been successfully established, the program will start copying the files needed
for monitoring the target system . After copying and initialization of the remote section of the
device are completed, a window with three vertical views appears . The left pane displays the
process tree, threads, and interrupts; the central pane displays system details; and the right
pane displays the symbols’ explanation . The main application pane enables you to access the
main utility controls, as shown in Figure 2–91 .

In the left pane, the tree can be expanded in order to view what process threads have been
started . The central pane displays a detailed view of the system, as shown in Figure 2–92 .

FIguRE 2–92 Windows Embedded CE Remote Kernel Tracker detailed system view

 Remote Utilities 71

By using the main pane of the application, you may set the zoom level (Zoom Range (ms)),
with a maximum of 1 millisecond (ms) and a minimum of 10,000 milliseconds . The square
boxes in the system details window represent various system events tracked by the utility . If
you hover the cursor over a square, you will be able to see detailed information about the
selected event . By using the menu (View, and then Event Filter), you can filter system events
available for viewing .

FIguRE 2–93 Thread pane context menu

FIguRE 2–94 System details pane context menu

The context menus in a thread pane, as shown in Figure 2–93, and in a system details pane,
as shown in Figure 2–94, enable you to perform additional actions to analyze the system
processes, as well as to find and resolve problems . The utility saves the session data for sub-
sequent analysis, for which the user is prompted at the end .

Call Profiler
The Call Profiler utility enables you to track the time it takes to run parts of the applica-
tion code and therefore to locate problems in the code that impact the application perfor-
mance as a whole in a negative way . To ensure that this utility is capable of collecting data,
the application code needs to receive additional instructions that will send Call Profiler the
 information about code operation . In order to perform this build, it is necessary to set
additional parameters for the application build:

n WINCECALLCAP=1, for CallCAP profiling .

n WINCEFASTCAP=1, for FastCAP profiling .

This can be done in the Command Prompt window of the design interface or in the Sources
file . As we mentioned earlier, the profiler subsystem supports two types of profiling, FastCAP

72 Chapter 2 Operating System and Application Development Tools

and CallCAP . FastCAP inserts a service code before calling each function and right after the
return from the application function . CallCAP inserts a service code right after a function is
called and before the return from the function . FastCAP functionality is not supported for
x86 processors .

To launch this utility, choose Target from the main menu, then Remote Tools and, in the
menu that appears, choose Call Profiler . The main program window appears . In the up-
per portion of the screen, there is a dialog box for the target device . If the device has an
 established active connection with Platform Builder, you may skip all configuration settings
and choose Default Device, which uses the default settings of the most recently connected
device .

To configure additional settings or to add another device, click the Cancel button and
 configure the connection settings for the device . These settings are configured in the same
way for all remote utilities . They were discussed in more detail in the “File Viewer” section .

To connect to a device, choose Connection, and then Connect to Device . A dialog box
 appears, similar to the one that shows up when the program starts . Choose a device and click
OK . A dialog box appears showing the progress of being connected to the device . Next, a
dialog box for launching the Call Profiler appears, as shown in Figure 2–95 .

FIguRE 2–95 Collection Control dialog box

Click the Start button to start collecting data . After that, you will be able to launch programs
on the device and perform all necessary actions . After the test scenarios have been run, click
the Finish button to stop collecting data and to view it in a graph . A second option is to
launch the application on the device by pressing the Launch button and entering the
application name, as shown in Figure 2–96 .

 Remote Utilities 73

FIguRE 2–96 Launch program for profiling

Collected information can be available in various views . It enables you to analyze the applica-
tion performance, as shown in Figure 2–97 .

FIguRE 2–97 Analysis of collected data in Call Profiler

Note that the Call Profiler utility is not intended for profiling the system code .

74 Chapter 2 Operating System and Application Development Tools

Table 2–7 shows other utilities included in the toolkit .

TABlE 2–7 Other utilities.

Utility Purpose

CEAppCompat .exe Checks the compatibility of libraries and applications of earlier version
of CE with the new version of the operating system .

BinCompress .exe Prepares compressed files for the x86 BIOS loading utility .

BinMod .exe Extracts and replaces files in the image . Only for files from the FILES
section .

CEBackup .exe Backs up and restores system libraries supplied with Platform Builder
(.lib files from the Public directory tree) .

CreateMUI .bat Creates Multilingual User Interface (MUI) files for a given language .

CvrtBin .exe Converts ROM files (.bin) into true binary format or into the Motorola
format .

DumpBin .exe Collects information from 32-bit Common Object File Format (COFF)
files (.exe, .DLL), such as imported and exported functions .

KbdGen .exe Generates keyboard layout files for Windows Embedded CE using DLL
files of the Windows XP keyboard layout as a base .

ReadLog .exe Converts the log file CELog into a text format or a format readable by
the Kernel Tracker utility .

StampBin .exe Enables you to view and modify data in the ROMPID and ROMHDR
regions of the binary image (BIN) .

Sysgen_capture .bat Generates Sources files for Public projects that the developer wishes to
transfer to his or her own code tree; for example, a driver that can be
transferred to the developer’s own BSP for subsequent modification .

ViewBin .exe Views information about the system’s image (.bin) .

CabWiz .exe Creates .cab files for installing programs on the device .

Wceldcmd .exe Used to install .cab files to a specified location . Supports standalone
devices .

Unldcmd .exe Used for uninstalling created .cab files . Supports standalone devices .

 75

Chapter 3

Operating System Architecture
Microsoft Windows Embedded CE 6 .0 is a real-time, componentized, multithreaded operat-
ing system (OS) that supports preemptive multitasking and runs on multiple processor archi-
tectures, including ARM, Microprocessor without Interlocked Pipeline Stages (MIPS), x86, and
SH4 . Windows Embedded CE 6 .0 operates in the virtual address space of 4 gigabytes (GB) .
The system kernel uses the upper 2 GB of virtual memory, while the active user process uses
the lower 2 GB . Windows Embedded CE 6 .0 supports up to 32,000 user processes, with the
actual number of processes limited by the system resources . User processes include special
processes that make the application programming interface (API) available for user applica-
tions . Such applications are named user-mode servers . These include Udevice .exe (User Mode
Driver Host, a process that loads user-mode drivers) and Servicesd .exe (a process that loads
services such as Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Universal
Plug and Play (UPnP), and so on) . The system shell makes the main interface available to the
user . If the system shell makes an additional API available, it is also a user-mode server .

The core of the operating system is the Nk .exe process, into which dynamic libraries respon-
sible for various types of system functionality are loaded . You can also load system libraries
and drivers into the kernel . Kernel libraries that make the API available for user applications
are named kernel-mode servers .

The system API is available to applications through the coredll .dll library, which is linked to all
executable modules of the operating system . The kernel modules are linked to a special ver-
sion of coredll .dll for the kernel named k .coredll .dll . If a module is linked to coredll .dll and is
loaded into the kernel, then all coredll .dll calls are automatically rerouted to k .coredll .dll .

In addition to the system API, the operating system offers an application API that is similar to
the desktop Win32 API . A developer can access applied functionality through various appli-
cation libraries, such as Wininet .dll, Winsock .dll, Msxml .dll, and Winhttp .dll . The system archi-
tecture includes the following components, as shown in Figure 3–1 .

76 Chapter 3 Operating System Architecture

Kernel.dll

OAL

CPU RAM ROM

CPU

SD COM

USBHardware Mouse

Audio Video

LANPAN

k.coredll.dll

Applications

Us
er

 P
ro

ce
ss

es
Ke

rn
el

Win32 CE API
Coredll.DLL/WinINet.dll/CommCrtl.Dll/CommDlg.dll/WinSock.dll/...

Drivers

GWES.dll Device.dll Filesys.dll
NDIS Network

Services
FsdMgr.dllDevMgr.dllKitl.dll

User-mode Driver XUser-mode Driver X
System
Shell

Servicesd.exe Udevice.exe Udevice.exe

Service 2

Service 1

FIguRE 3–1 System architecture

Operating System Kernel Architecture
Let us take a closer look at the structure of the system kernel . A system kernel can be graphi-
cally represented as shown in Figure 3–2 .

 Operating System Kernel Architecture 77

Kernel.dll

OAL

k.coredll.dll

Drivers

GWES.dll Device.dll Filesys.dll
NDIS Network

Services
FsdMgr.dllDevMgr.dllKitl.dll

FIguRE 3–2 System kernel

The Nk .exe process is built from a static OEM adaptation layer (OAL) library, which is linked to
the kernel .dll library file . Therefore, in Windows Embedded CE 6 .0, the interface between the
OAL and the system kernel is predetermined as much as possible . Table 3–1 outlines the main
kernel-mode system servers and their functionality .

TABlE 3–1 Kernel-mode system servers.

Kernel-Mode Server Functionality

kernel .dll
This is the system kernel . It provides basic functionality such as mem-
ory management, process loading, scheduler, and process and thread
management .

kitl .dll Implements Kernel Independent Transport Layer (KITL) .

filesys .dll
File system, object store, registry, CEDB database, and system initial-
ization .

fsdmgr .dll File system manager, file system filter manager, and media manager .

device .dll
Together with devmgr .dll, it provides the Device Manager functional-
ity .

devmgr .dll
Loads and manages drivers; loads input/output (I/O) resource man-
ager .

gwes .dll Responsible for the Graphics, Windowing, and Events Subsystem
(GWES) . Supports windows, dialog boxes, controls, menu, and other
resources related to the user interface . Controls window manager and
window messaging manager, including keyboard messages, mouse
messages, touch screen messages, and so on .

k .coredll .dll A version of coredll .dll for the system kernel .

In addition to the system libraries, you can also load kernel-mode drivers into the kernel .

78 Chapter 3 Operating System Architecture

Operating System and Hardware Interaction
The Windows Embedded CE 6 .0 kernel interacts with hardware through the OAL, which con-
ceals specific implementation of the processor and its periphery from the kernel implemen-
tation for the processor type shipped with the developer tools . It also performs hardware
initialization . The operating system interacts with hardware by using drivers . A combination
of the OAL, drivers, and configuration files for a specific hardware platform is named a board
support package (BSP) . The development suite includes samples of BSP implementations
for reference platforms . Usually, a new BSP development starts by cloning the existing BSP
sample that most closely matches the development BSP .

As mentioned before, drivers can be loaded into the kernel space . Such drivers are named
kernel-mode drivers . Drivers that are loaded into a specialized user process, Udevice .exe (or
User Mode Driver Host), are named user-mode drivers . Kernel-mode drivers offer higher
productivity . Systems that use user-mode drivers are more fault-tolerant . The infrastructure
of system drivers is designed in such a way that if certain requirements are met, you can
 develop drivers that function in both user mode and kernel mode .

Operating System Virtual Memory Architecture
The Windows Embedded CE 6 .0 operating system is built based on virtual memory, which
provides the operating system with a flexible and effective way of managing the limited
resources of physical memory . The architecture of virtual memory is a mapping of virtual
memory addresses to physical addresses . The architecture of virtual memory implies that
virtual memory is mapped to physical memory, and not vice versa . Generally speaking, it is
impossible to determine a corresponding virtual address if you know the physical address .
Besides, sometimes it is common for multiple virtual addresses to be mapped to the same
physical address . For example, the binary code of a dynamic-link library (DLL) can be loaded
once into physical memory, yet be used by various processes .

Windows Embedded CE 6 .0 is a 32-bit operating system . The 32-bit architecture provides
4 gigabytes (GB) of address space . Windows Embedded CE 6 .0 operates in a flat 4-GB ad-
dress space where the system kernel uses the upper 2 GB and the active user process uses
the lower 2 GB . Virtual memory is allocated by page . The size of a virtual memory page in CE
6 .0 equals 4 kilobytes (KB) and is determined by the architecture of the supported processor
types . A virtual memory page represents a contiguous sequence of bytes, which corresponds
to a contiguous physical memory page . The memory management unit (MMU) of the pro-
cessor is responsible for working with virtual memory and for translating virtual addresses
into physical addresses . Information about virtual-to-physical memory mapping is stored in
the page table . The page table stores information about virtual-to-physical memory page
mapping as well as additional page properties such as write access, availability for execu-
tion, access denial, and so on . When the system accesses the memory address, the processor

 Operating System Virtual Memory Architecture 79

checks page tables in order to find the physical page that the system is addressing . If the
physical page is not found, a page fault occurs . A page fault also occurs if the requested ac-
cess to the address does not match the page, such as during attempts to write to a page that
is marked as read-only .

There are three states of virtual memory in CE 6 .0:

n Free when memory is not allocated or used by the system .

n Reserved when memory is reserved but has not yet been mapped to the physical
addresses .

n Committed when memory is reserved by the system and its mapping to physical ad-
dresses has been set .

Windows Embedded CE 6 .0 commits virtual pages by request, which means that the process
of committing a page is postponed for as long as possible . For example, when Windows
Embedded CE allocates a stack or a heap, virtual memory is reserved, not committed . When
an active application thread tries to access a reserved address, a page fault occurs, the active
thread execution is suspended, the kernel processes the page fault, a necessary number of
pages are committed, and code tables are corrected, after which the active threads resume
operations . Page fault processing happens entirely inside the kernel and is thus hidden .
Therefore, the process of addressing the memory (in this case, a stack memory or a heap
memory) is completely transparent to the application .

Physical Memory Virtual Memory

512 M
B

N
on-cached

512 M
B

Cached
2 G

B

Device Buffer

0x0200 0000

0x0000 0000
0x0000 0000

0x8000 0000

0xA000 0000

0xC000 0000

0xFFFF FFFF

Kernel
Space

32 MB RAM

16 MB ROM

Device Buffer

32 MB RAM

16 MB ROM
Device Buffer

32 MB RAM

16 MB ROM

User
Space

FIguRE 3–3 An example of static mapping from physical memory to virtual memory

80 Chapter 3 Operating System Architecture

A key element of the virtual memory architecture is the ability to map virtual addresses to
physical addresses . Windows Embedded CE provides two virtual-to-physical mapping types,
static and dynamic . The processor (for MIPS and SH4) or the manufacturer in an OAL (for
x86 and ARM) in a special structure named OEMAddressTable determines static mapping . An
 example of static mapping is shown in Figure 3–3 .

An important distinction of statically mapped virtual memory is that it is always available (com-
mitted), as opposed to dynamically mapped memory . Therefore, the kernel has guaranteed
access to statically mapped virtual memory, which is required for low-level kernel initialization
and for processing exception errors such as page faults . The necessity of enabling memory
 access for the kernel produces a requirement that the entire read-only memory (ROM)/random
access memory (RAM) of the device can be statically mapped, including the device memory
that is used for processing interrupt service routines (ISRs), which are processed in the kernel-
exception context .

Windows Embedded CE supports static mapping of two virtual memory regions, each 512
MB in size . The lower 512 MB (0x8000 0000–0x9FFF FFFF) of virtual memory is mapped to
physical memory with caching, and the upper 512 MB (0xA000 0000–0xB999 9999) of virtual
memory does not use caching . Static mapping of the virtual memory is a good demonstra-
tion of the virtual memory architecture having two different virtual memory addresses
with different access properties mapped to the same physical memory . Accessing virtual
memory in region 0x8000 0000–0x9FFF FFFF does not necessarily result in accessing physical
memory, because the value can be read from the cache . Accessing virtual memory in region
0xA000 0000–0xB999 9999 always results in accessing physical memory . This distinction is
important to keep in mind while developing drivers .

2 G
B for Kernel

2 G
B for Process

Kernel Traps
Kernel Data Pages

System Kernel

Object Store

Statically Mapped
Addresses

Memory-mapped
Files

User Process
Execution Code

User Libraries

Up t
o 3

2,000

Proc
es

se
s

FIguRE 3–4 Windows Embedded CE 6 .0 virtual memory space map

 Operating System Virtual Memory Architecture 81

Dynamic mapping of the virtual memory occurs as part of the system and application op-
erations by calling functions such as VirtualAlloc, VirtualAllocEx, VirtualCopy, VirtualCopyEx,
VirtualAllocCopyEx, and so on . Despite the fact that the system uses 4-KB virtual memory
pages, the system API of Windows Embedded CE 6 .0 enables you to allocate virtual memory
only with a 64-KB alignment (16 pages) that commits (maps) virtual memory by request or by
calling designated functions directly by using page-by-page alignment . Figure 3–4 shows a
Windows Embedded CE 6 .0 virtual memory space map .

The kernel address space takes up the upper 2 GB and is identical for all system processes .
The user space takes up the lower 2 GB and is unique for each process . The system kernel
maps the address space of each designated process into this address space each time there is
a switch between processes . At any given time, there is only one current process that has its
own address space; it cannot access the address space of another process or obtain access to
the kernel memory space . The system kernel has access to the entire address space and can
obtain access to any permitted memory address .

Let us now look at a more detailed map of virtual memory of the operating system by exam-
ining the virtual memory allocation in kernel virtual address space, as shown in Figure 3–5 .

CPU Virtual Memory
(256 MB)

0xFFFF FFFF

0xF000 0000

0xE000 0000

0xD000 0000

0xC800 0000

0xC000 0000

0xA000 0000

0x8000 0000

Kernel Virtual Memory
(256 MB if CPU is

Supported)

Kernel Virtual Memory
(256 MB)

Object Store (128 MB)

Kernel XIP Libraries
(128 MB)

Non-cached Statically
Mapped Addresses

(512 MB)

Cached Statically
Mapped Addresses

(512 MB)

FIguRE 3–5 Kernel virtual address space map

82 Chapter 3 Operating System Architecture

Table 3–2 provides a detailed description of kernel virtual memory allocation .

TABlE 3–2 Kernel virtual memory allocation.

Memory Region Size Description

0x80000000–0x9FFFFFFF 512 MB Statically mapped virtual addresses accessed with caching .

0xA0000000–0xBFFF FFFF 512 MB Statically mapped virtual addresses accessed without caching .

0xC0000000–0xC7FF FFFF 128 MB Mapping of execute in place (XIP) DLLs loaded by the kernel,
servers, and kernel drivers . XIP entails running without copying
into the RAM and fix-up addresses .

0xC8000000–0xCFFFFFFF 128 MB Object store for RAM file system, CEDB databases, and registry .

0xD0000000–0xDFFFFFFF 256 MB Virtual memory of the kernel used for all OS kernel modules .

0xE0000000–0xEFFFFFFF 256 MB Virtual memory of the kernel, if supported by the processor .

0xF0000000–0xFFFFFFFF 256 MB Captures system calls and includes kernel data pages .

Let us now proceed to the discussion of virtual memory allocation in user address space, as
shown in Figure 3–6 .

Shared System Heap
(255 MB)

Memory-mapped Files
Stored in 256 MB RAM

Process Space (1 GB)

Buffer Between User Spaces
and Kernel (1 MB)

User Kernel Data (64 KB)

Shared Address Space
for User Process Libraries

(512 MB)

0x7000 0000

0x7FFF FFFF

0x6000 0000

0x4000 0000

0x0000 0000

0x7FF0 0000

0x0001 0000

FIguRE 3–6 Kernel virtual address space map

 Memory Management 83

Table 3–3 provides a detailed description of user virtual memory distribution .

TABlE 3–3 user virtual memory distribution.

Memory Region Size Description

0x00000000–0x00010000
64 KB User kernel data . The user process has read-only ac-

cess .

0x00010000–0x3FFFFFFF 1 GB–64 KB Contains process space executable code, virtual mem-
ory, heap, and stack . Virtual memory allocation starts
immediately after executable code and proceeds from
the bottom up .

0x40000000–0x5FFFFFFF 512 MB Contains DLLs, code, and data with memory allocation
proceeding from the bottom up . Libraries that are
loaded into various processes are loaded by using the
same address . At the same time, code pages refer to
the same physical pages, and data pages refer to dif-
ferent physical pages for various processes .

0x60000000–0x6FFFFFFF 256 MB The regions of memory-mapped files that are stored
in the memory . Unnamed memory-mapped files are
stored at fixed addresses for backward compatibility .

0x70000000–0x7FEFFFFF 255 MB Shared heap between the kernel and processes . The
kernel, servers, and drivers may allocate memory to
this region and write to the allocated memory . The
user process can only read from this region . It enables
the user process to receive data from the kernel
 without making a system kernel call .

0x7FF00000–0x7FFFFFFF 1 MB Cannot be viewed for protection purposes; acts as a
buffer between user space and kernel space .

Memory Management
The processes of dynamic allocation, which consists of committing and freeing virtual
 memory directly by using a designated API (VirtualXxxx), provide an opportunity to utilize
the maximum capability of the virtual memory architecture . However, the use of those
 functions implies that you have knowledge of the structure and virtual memory architecture
of Windows Embedded CE 6 .0 and, possibly, of the processor physical architecture .

Table 3–4 describes the main API for working with virtual memory and its purpose .

84 Chapter 3 Operating System Architecture

TABlE 3–4 Functions for virtual memory API.

Function Purpose

VirtualSetAttributesEx

Enables you to modify memory attributes on a page level .

Accessible only in kernel mode .

VirtualProtectEx
Sets access protection for the page region in the address space of a speci-
fied process .

VirtualQueryEx
Provides information about the page region in the address space of a
specified process .

VirtualAlloc
Commits the page region in the address space of a process in which it is
called .

VirtualFree
Frees or decommits the page region in the address space of a process in
which it is called .

VirtualProtect
Sets access protection for the page region in the address space of a pro-
cess in which it is called .

VirtualQuery
Provides information about the page region in the address space of a
process in which it is called .

VirtualAllocEx
Commits the page region in the address space of a specified process; the
allocated memory is initialized to zeroes .

VirtualFreeEx
Releases and/or decommits the page region in the address space of a
specified process .

VirtualCopyEx Dynamic mapping of the virtual address to the physical address; a new
entry is created in the page table .

The resulting mapping is turned off by calling VirtualFree .

VirtualAllocCopyEx Works as a consecutive execution of the VirtualAllocEx function and then
the VirtualCopyEx function . The resulting mapping is turned off by calling
VirtualFreeEx . Accessible only in kernel mode .

The application development process often does not require that you interact directly with
virtual memory; however, you must have the ability to dynamically allocate a large number
of memory regions of variable size (usually, a lot less than 64 KB) with granularity of at least 1
byte . To solve this problem, the operating system provides applications with a heap created
through direct interaction with virtual memory . A heap provides a developer with an ability
to allocate memory blocks of variable size with granularity of 1 byte without having to com-
mit virtual memory .

Windows Embedded CE 6 .0 implements a heap as follows:

n It is a sequence of unmovable blocks .

n When searching for free memory, the first suitable block is allocated .

n If the first block of the needed size is not found and the heap has no restrictions on
maximum size, additional memory is allocated for the heap .

 Memory Management 85

n When additional memory is allocated, a heap is not guaranteed contiguity of its result-
ing address space .

n Free heap blocks are combined forward according to a list with each memory alloca-
tion and deallocation cycle .

n A search for blocks for new memory allocation always starts from the last allocated or
deallocated block .

n Each time there is a request for more than 16 KB of memory, a separate heap is created .

Because unmovable blocks are used, virtual memory pages (4 KB) are deallocated by the
heap only when all of its blocks are deallocated . An application can allocate and deallocate
memory from a heap arbitrarily . However, considering the sequential structure of the heap
and the algorithm of searching for unallocated blocks, that are being used, there is a pos-
sibility of heap fragmentation . Heap fragmentation may result in the increase of time that
it takes to search for unallocated blocks and, in an extreme case, despite the presence of
 unallocated memory space, it would be impossible to allocate memory from a heap without
having additional memory .

This type of heap implementation works best with smaller memory blocks of the same size
or of sizes that are as similar as possible, by using the “first one to be allocated, last one to be
deallocated” rule , which provides the most efficient use of the block combining algorithm .

When the operating system creates the process, it automatically creates and reserves (but
does not commit) a process heap with 64 KB of memory . The initial heap size is 64 KB,
with 60 KB of virtual memory reserved and 4 KB left at the end of the region for additional
 protection against heap overflow .

A heap that is created automatically when the process is loaded is named a local heap . A
developer can create any number of private heaps for use in his or her application . If a heap
is created by the kernel process, it may be a shared heap . A shared heap, is available to
the kernel for reading and writing, whereas user processes can only have read access to it .
Windows Embedded CE 6 .0 includes a new type of heap, and that is a remote heap which is
a heap that one process (server) creates in another process (client) . A process that creates a
remote heap has full access to it, whereas the client process has read access and an optional
write access .

When a heap is created, the developer may specify the initial and the maximum size of the
heap . If a maximum size of the heap is specified, the heap is created with a certain size, so
that automatic size growth does not happen .

The main API for working with heaps is described in Table 3–5 .

86 Chapter 3 Operating System Architecture

TABlE 3–5 Heap API functions.

Function Purpose

CeRemoteHeapCreate
Creates a remote heap in a specified process and determines the
client process rights to the heap .

CeRemoteHeapMapPointer
Maps a pointer to the memory received from a remote heap in one
process to a pointer that is available to another process from a pair .

HeapAlloc Allocates memory from a given heap .

HeapCompact
Compacts unallocated heap blocks that are close together and
stops committing large unallocated blocks of virtual memory .

HeapDestroy Destroys a specified heap .

HeapFree Deallocates memory that was allocated from a specified heap .

HeapReAlloc Reallocates memory from a specified heap .

HeapSize Returns a memory block size allocated from a specific heap .

HeapValidate Validates service information about the heap .

LocalAlloc Allocates memory from a process heap (local heap) .

LocalFree Frees up memory that was allocated from a local heap .

LocalReAlloc Reallocates memory from a local heap .

LocalSize Returns a memory block size allocated from a local heap .

GetProcessHeap Returns a handle to a local heap of the process in which it is called .

CeHeapCreate
Allocates a heap with specified memory allocator and memory
deallocator functions .

A stack is the simplest type of memory that is available to a developer . It is created, used, and
controlled automatically . A stack is used for storing local variables in functions, addresses of
function returns, and the state of the processor registers during exception handling .

Under Windows Embedded CE 6 .0, a stack is created for each thread in the system . Stack
architecture depends on the hardware architecture, although the stack size is usually limited
to 64 KB, out of which 8 KB are reserved to control stack overflow1 . Therefore, by default, the
stack size is limited to 56 KB .

If the entire stack object is used, an attempt to allocate memory from it results in an access
violation error and the application terminates abruptly .

1 Default linker settings include a control stack overflow option .

 Memory Management 87

By using the /STACK linking parameter, you can change the default stack size; you can also
specify the size of a stack directly during the process of creating a thread by using the
CreateThread function . When you change the default stack size, it is necessary to consider
that all threads in the system will be created by using the specified stack size, which may
result in memory availability issues in the systems with limited resources . Stack memory is
committed on a per-page basis only if necessary . Memory is committed initially when the
scheduler makes a thread available for execution for the first time .

A static data block represents the next type of memory . This block contains strings, buf-
fers, and other static values that the application references throughout its life . Windows
Embedded CE 6 .0 allocates two sections for static data, one for read/write data and one for
read-only data . Because the operating system allocates these areas on a per-page basis,
there may be some space left over from the static data up to the next page boundary . It is
recommended that no extra space be left at the end of the static block area . It might be bet-
ter to move a few buffers into a static data area, rather than allocating those buffers dynami-
cally, as long as there is space in the static data area, or to initialize lines statically rather than
dynamically . The easiest way to determine the size of static data is by accessing the map file
of the linker .

Memory-mapped files represent the next type of memory used in applications . Memory-
mapped files are the files that are mapped into the virtual address space . A developer has
access to files by simply accessing certain areas of the memory . Changes made directly in
memory are mapped accordingly in the file .

The operating system enables you to create named and unnamed memory-mapped files .
The named memory-mapped files can be accessed from another process by requesting a file
with the same name, thus enabling different processes to interact with each other . The un-
named memory-mapped files also can be used for interprocess communications . In order for
another process to access the mapping, it is necessary to use the DuplicateHandle function
to make a new handle to the mapping and pass the handle to the other process .

If the file that is being mapped to memory was created based on an actual media device, the
operating system handles this file by reading the file data from the media device in memory
and back . These types of memory-mapped files are named file-backed . You can create a
memory-mapped file that will have no corresponding file in the media device . In this case,
the entire file is stored in the operating system memory and not on a disk . Such files are
named RAM-backed .

The main API for working with memory-mapped files and its purpose are described in
Table 3–6 .

88 Chapter 3 Operating System Architecture

TABlE 3–6 Functions for working with memory-mapped files.

Function Purpose

CreateFile
Creates and opens a file that can be used for memory mapping .

Returns a file handle .

CreateFileForMapping Creates and opens a file that can be used for memory mapping . The
kernel creates the file . The handle automatically closes when the process
completes .

You should not use this function; instead, you should use the regular
CreateFile function .

Returns a file handle .

CreateFileMapping Creates a named or unnamed memory-mapped file based on another file
or RAM . This function also returns a handle of a memory-mapped file .

MapViewOfFile Creates a view of a memory-mapped file or its part in the address space
and returns the initial address of the view of a memory-mapped file .

FlushViewOfFile Flushes the view of a memory-mapped file .

UnmapViewOfFile Unmaps a view of the memory-mapped file .

Processes, Threads, Fibers, and the Scheduler
The Windows Embedded CE base execution unit is a thread . Each thread has its own context
(stack, priority, access rights, and so on) and is executed in the process container . Each pro-
cess contains at least one thread that is the primary thread . Windows Embedded CE has a
theoretical limitation of 32,000 processes that the system can simultaneously load . The num-
ber of threads is not theoretically limited, but that number is limited by the number of avail-
able descriptors . All process threads have a shared address space—the memory allocated
by one thread is available to other threads within that process . Also, all process threads have
equal rights to access descriptors regardless of the nature of their handle . Access rights to the
address space of another process are determined on a thread level .

The scheduler is a kernel component responsible for managing thread execution . The sched-
uler ensures a predictable order of thread execution by using thread prioritization . When
interrupts occur in the scheduling system, the scheduler takes the interrupts into account and
reprioritizes threads accordingly . The Windows Embedded CE scheduler implements a pro-
cess of time-slotted operation that uses multitasking, is based on priority, and has support
for a single-level priority inversion .

 Processes, Threads, Fibers, and the Scheduler 89

The multitasking support system of Windows Embedded CE has the following characteristics:

n Time-sliced multitasking .

o Usually, a slice of execution time (quantum) is equal to 100 milliseconds (ms) .

o A quantum can be set by the device manufacturer .

o A quantum can be set programmatically for each thread .

n 256 priority levels .

o 0–thread executes until completion .

o 251–default thread priority .

n Preemptive multitasking .

o If several threads of different priority levels are ready for execution, the thread
with the highest priority level as of the time of scheduling is made available for
execution .

n Round-robin scheduling of threads with the same priority level .

o After a thread has completed executing a quantum, if the system had other
threads with the same priority level as the first thread, the system suspends ex-
ecution of the specified thread and makes another thread available for execution .
The suspended thread is scheduled for execution after the system runs all threads
with the same priority level . That is, the system executes threads with the same
priority level cyclically .

o If a time slice is set to zero, the system excludes the thread from cyclical execution
and instead runs it until it completes or is blocked, as long as there are no higher-
priority threads or interrupts .

n One level of priority inversion is supported .

o Priority inversion happens when a lower-level-priority thread blocks the execu-
tion of a higher-level-priority thread by holding the resource for which the
higher-level priority thread waits .

o A one-level priority inversion denotes that only one thread’s priority is increased,
which helps to resolve one-level blocking problems . If a lower-level-priority
thread is blocked by a process with an even lower priority level, then one-level
priority inversion will not be able to unblock the resource .

Figure 3–7 shows an example of thread execution that demonstrates time-slicing, a cyclical
scheduling of threads with the same priority level, and pushing threads with a lower priority
level to the background .

90 Chapter 3 Operating System Architecture

El
ap

se
d

Qu
an

tu
m

Quantum

Pr
io

rit
y

Time

Th
re

ad
 1

 B
lo

ck
ed

El
ap

se
d

Qu
an

tu
m

El
ap

se
d

Qu
an

tu
m

El
ap

se
d

Qu
an

tu
m

El
ap

se
d

Qu
an

tu
m

Th
re

ad
 1

 R
ea

dy
 to

 R
un

Th
re

ad
 2

 B
lo

ck
ed

Th
re

ad
 3

 B
lo

ck
ed

4 4

3232

11 1

FIguRE 3–7 Windows Embedded CE scheduler thread execution

Let us take a closer look at the process depicted in Figure 3–7 . There are four threads . The
first thread (1) has the highest priority level, while the fourth thread (4) has the lowest prior-
ity level . The second (2) and the third threads (3) have the same priority level, which is higher
than that of the fourth thread and lower than the priority of the first thread . At the initial
stage, the first thread has the highest priority level of all threads that are ready to be ex-
ecuted . It executes within a quantum (slice) of time, after which the scheduler places it again
for execution because the thread continues to have the highest priority level . After a while, in
less than one time quantum of execution, the first (1) thread is blocked . Now the second (2)
and the third (3) threads can be executed . Because these threads have equal priority, they are
scheduled to be executed in a cyclical manner . In our case, first the second (2), then the third
(3), then again the second (2) executes until it is blocked and the third one (3) executes until
that one is blocked . Now the system has only one thread, the fourth thread (4), that is ready
for execution . It is executed in a quantum of time, after which the scheduler once again starts
planning its execution because it remains to be a thread with the highest priority level ready
for execution . After a while, in less than one time quantum of execution, the first (1) thread is
unblocked, so the first thread is ready for execution . Execution of the fourth (4) thread stops,
and it is preempted by the first (1) thread, which continues to run .

Figure 3–8 shows a typical scheme of resource blocking that is resolved by priority inversion .

 Processes, Threads, Fibers, and the Scheduler 91

Thread A Thread A

Thread B

Thread C Thread C Thread C

Preempted

Preempted

Took
Ownership

Took
Ownership

Blocked Freed

Resource

Pr
io

rit
y

FIguRE 3–8 Resource blocking resolved by priority inversion

Let us take a closer look at the process depicted in Figure 3–8 . Thread A acquires a resource,
and after a while it is pushed away by a higher-priority thread B, which in its turn is pushed
away by thread C, which, after a while, is blocked while waiting for a resource captured by
thread A . Because thread A is not the highest-priority thread of the ones that are left, af-
ter the high-priority thread C is blocked, it will stop executing and the resource will remain
blocked . Therefore, a low-priority thread blocks a higher priority thread as far as the resource
is concerned . When a similar situation is detected, the scheduler increases the priority of a
lower-priority thread A to the level of a blocked high-priority thread C until a lower-priority
thread has freed a resource . After that, the priority level of low-priority thread A is restored,
and thread C continues executing .

Windows Embedded CE implements a single-level priority inversion, which means that prior-
ity is increased for only one thread . Therefore, if a thread that blocked a higher-priority-level
thread is blocked by a lower-priority thread, the single-level priority inversion will not result
in unblocking . A fully nested priority inversion may resolve a multilevel mutual blocking; the
scheduler will go through all blocked threads and increase the priority if necessary until a
higher-priority thread is unblocked . However, this disrupts a predictability of execution and
does not provide an opportunity to entirely utilize priority inversion in a system with a real-
time support, such as Windows Embedded CE .

A developer is required to write his or her code in such a way that avoids mutual blocking . In
real-time systems, a developer must avoid priority inversion because it disrupts the execution
thread . To do that, it is necessary to not have race conditions for a resource, which is accom-
plished by setting the same priority level for all threads that work with one resource .

Let us now look at how APIs work with threads . Table 3–7 shows the main API for working
with threads and processes, as well as the functions

92 Chapter 3 Operating System Architecture

TABlE 3–7 Functions for working with threads and processes.

Function Purpose

CeGetThreadPriority Returns the priority (0–255) of a thread .

CeGetThreadQuantum Returns the time slice (quantum) of the thread execution .

CeSetThreadPriority Sets priority (0–255) of a thread .

CeSetThreadQuantum Sets the time slice (quantum) of the thread execution .

CreateProcess Creates a new process and the main thread .

CreateThread Creates a thread in the address space of a process .

ExitProcess Finishes the current process and all of its threads .

ExitThread Finishes the current thread .

GetCurrentProcess Returns a pseudo-handle of the process in which it was named .

GetCurrentProcessId
Returns the identifier of a process in which it was named; coincides with
the pseudo-handle of the process .

GetCurrentThread Returns the pseudo-handle of the process in which it was named .

GetCurrentThreadId
Returns the identifier of the thread in which it was named; coincides with
the pseudo-handle of the process .

GetExitCodeProcess Returns an exit code for a specified process .

GetExitCodeThread Returns an exit code for a specified thread .

GetThreadContext Returns the context for a specified thread .

GetThreadPriority Returns the priority (248–255) of a specified process .

OpenProcess Returns a handle for the existing process according to an identifier .

OpenThread Returns a handle for the existing thread according to an identifier .

ResumeThread
Decreases suspend count by one . Thread execution will continue when the
count is equal to zero .

SetThreadContext Sets context for a specified thread .

SetThreadPriority Sets priority (248–255) for a specified thread .

Sleep Suspends execution of the current thread for a specified period of time .

SuspendThread Suspends thread execution and increases suspend count by one .

TerminateProcess Terminates a specified process and all of its threads .

TerminateThread Terminates a specified thread .

TlsAlloc Receives an index for making an entry in a thread local storage (TLS) .

TlsFree Frees an index of a local thread storage thus making it reusable .

TlsGetValue Receives a value from local thread storage according to an index .

TlsSetValue Sets a value in local thread storage according to an index .

 Synchronization Objects 93

In addition to the threads whose execution is scheduled by the system scheduler, there are
execution units that are manually scheduled for execution by an application . These units are
named fibers . Fibers have the following characteristics in Windows Embedded CE:

n A fiber is executed in a context of a thread that launches it .

n Each thread may execute several fibers .

n In order to manage fibers, the thread itself needs to be converted to a fiber by calling
the ConvertThreadToFiber function .

n A fiber is executed when its thread is executed .

n Fibers are not preempted . The thread switches fiber execution directly .

The main API for working with fibers and its purpose are listed in Table 3–8 .

TABlE 3–8 Functions for working with fibers.

Function Purpose

ConvertThreadToFiber Converts a current thread to a fiber .

CreateFiber
Creates a fiber and sets its stack and the starting address . Does not
launch a fiber execution .

DeleteFiber Deletes a current fiber .

GetCurrentFiber Returns the current fiber’s address .

GetFiberData
Returns data transferred to a fiber by ConvertThreadToFiber and
CreateFiber functions .

SwitchToFiber Launches execution of a specified fiber .

Synchronization Objects
Synchronization routines that ensure a coordinated execution of threads and a safe access to
resources are an integral part of a multithreaded execution system . Windows Embedded CE
has the following synchronization objects:

n Critical sections .

n Mutexes .

n Semaphores .

n Events .

n Point-to-point message queue .

In addition to these objects, you can also use a thread’s handlers and interlocked functions .

94 Chapter 3 Operating System Architecture

Each type of synchronization object has its own name space . An object with an empty string
(‘’) is also considered a named object .

Synchronization objects can be in a signaled or a non-signaled state . A thread requests a
synchronization object and is blocked if an object is in a non-signaled state . After an object
switches to a signaled state, the thread continues execution .

Table 3–9 provides a list of functions that enable you to block a thread execution until a cer-
tain synchronization object has changed to a signaled state .

TABlE 3–9 Function list for blocking threads.

Function Purpose

WaitForSingleObject
Blocks a thread execution while waiting until a specified synchroniza-
tion object has switched to a signal state .

WaitForMultipleObjects
Blocks a thread execution while waiting until one of the specified
 synchronization objects has switched to a signal state .

Let us begin looking at synchronization by examining interlocked functions . Interlocked
functions provide synchronized access to a shared variable . The objective of the function is to
prevent a preemptive movement of a thread during its execution . Interlocked functions and
their purpose, provided by Windows Embedded CE, are listed in Table 3–10 .

TABlE 3–10 Interlocked functions and their purpose.

Function Purpose

InterlockedIncrement
Atomically increments the value of a specified 32-bit variable by
one .

InterlockedDecrement
Atomically decrements the value of a specified 32-bit variable by
one .

InterlockedExchange Atomically exchanges the values of two 32-bit variables .

InterlockedTestExchange
Provides a conditional testing and sets the value of a 32-bit
 variable .

InterlockedCompareExchange
Provides a conditional atomic comparison and sets the value of a
32-bit variable .

InterlockedExchangeAdd
Atomically changes the value of a 32-bit variable to a specified
value .

InterlockedCompareExchange-
Pointer

Provides a conditional atomic comparison and sets the value of a
pointer .

InterlockedExchangePointer Atomically sets the value of a pointer .

A thread handle can act as a synchronization object . A thread is in a signaled state when it’s
executing, and it’s in a non-signaled state when it’s not executing .

 Synchronization Objects 95

A critical section is designed to protect the code area that accesses a shared resource that
must not be concurrently accessed by more than one thread of execution . A critical section is
a special data structure that an application must allocate and initialize before using it . To pro-
tect a code area, a thread calls a critical section (by using the EnterCriticalSection function)
and is blocked2 until the critical section becomes available . When exiting a code area that
needs to be protected, the thread frees the critical section (by using the LeaveCriticalSection
function) .

Critical section functions must have a pointer to the critical section data structure, which lim-
its the range of a critical section to the visibility range of a corresponding variable that con-
tains a specialized structure, that is, the range of the process or the library .

Entering a critical section does not result in turning to the kernel and creating a kernel-based
object, as long as there are no blocks . Therefore, using critical sections is a very effective so-
lution when there are only a few blocks .

The main API for working with critical sections and its purpose are provided in Table 3–11 .

TABlE 3–11 Functions for working with critical sections.

Function Purpose

InitializeCriticalSection Initializes a critical section .

EnterCriticalSection Blocks a thread execution while waiting for access to a critical section .
The function is returned when the thread that makes the call becomes
the owner of the critical section .

TryEnterCriticalSection
Tries to enter a critical section without blocking execution . If the call is
successful, the thread becomes the owner of the critical section .

LeaveCriticalSection Leaves a specified critical section .

DeleteCriticalSection
Deallocates all resources of a critical section that is owned by any
thread .

A mutex is designed to provide mutually exclusive access to a resource . A mutex is in a sig-
naled state when it is not owned by any thread . When it is owned by a thread, it is switched
to a non-signaled state . At any point in time, only one thread can own a mutex . As opposed
to a critical section, a mutex is a pure-kernel object, and therefore, when accessed by another
process, regardless of blocking, the kernel is called, which results in considerable overhead .

A mutex can be named or unnamed . Named mutexes provide synchronization among dif-
ferent processes . Mutex synchronization is achieved by using standard WaitForSingleObject/
WaitForMultipleObject functions . After a mutex operation finishes, its handle must be freed
by calling a standard CloseHandle function .

2 Also available is TryEnterCriticalSection, which enables you to try to obtain a critical section without blocking
 execution .

96 Chapter 3 Operating System Architecture

The main API for working with mutexes and its purpose are listed in Table 3–12 .

TABlE 3–12 Functions for working with mutexes.

Function Purpose

CreateMutex Creates a named or unnamed mutex object .

ReleaseMutex Releases a specified mutex object .

A semaphore is designed to limit the number of threads that are simultaneously using a re-
source . When a semaphore is initialized, the system specifies the initial number and the maxi-
mum number of threads that can simultaneously use a resource . Each time a process takes
ownership of a semaphore, the counter is decremented by one . Each time a process frees a
semaphore, the counter is incremented by one .

The counter value may be no less than zero and no more than the maximum value specified
upon semaphore creation . A semaphore is in a signaled state when the count is greater than
zero, and it’s in a non-signaled state when it is equal to zero . A semaphore can be named or
unnamed . Named semaphores provide the ability to perform synchronization among differ-
ent processes .

Semaphore synchronization is achieved by using standard WaitForSingleObject and
WaitForMultipleObject functions . After a semaphore operation terminates, its handle must
be freed by calling a standard CloseHandle function .

The main API for working with semaphores and its purpose are listed in Table 3–13 .

TABlE 3–13 Functions for working with semaphores.

Function Purpose

CreateSemaphore Creates a named or unnamed semaphore object .

ReleaseSemaphore
Releases a specified semaphore by incrementing the counter by a cer-
tain value .

The system uses events for informing that certain events have occurred at a certain mo-
ment in time . A thread may await a certain event to perform certain actions . An event is in a
signaled state when it is set, and it’s in a non-signaled state when it is not set (reset) . Based
on how resetting is done, events are classified into those with automatic resets and manual
resets . Events with an automatic reset are switched into a non-signaled state by the kernel as
soon as one thread that is awaiting an event has been freed . Events with a manual reset must
be reset manually by calling a special function .

An event can be named or unnamed . Named events provide synchronization among differ-
ent processes . Event synchronization is achieved by using standard WaitForSingleObject and

 Synchronization Objects 97

WaitForMultipleObject functions . After an event operation finishes, its handle must be freed
by calling a standard CloseHandle function .

The main API for working with events and its purpose are listed in Table 3–14 .

TABlE 3–14 Functions for working with events.

Function Purpose

CreateEvent Creates a named or unnamed event object .

SetEvent Turns the event object into a signal state .

ResetEvent Turns off the signal state of the event .

PulseEvent
Turns the event object into a signal state after a certain number of threads have
been unblocked . It turns off the signal state of the event object .

Let us take a closer look at the way the API interacts with various event types . When switch-
ing a manual reset event to a signaled state by using the SetEvent function, the event re-
mains in a signaled state until it is manually reset by the ResetEvent function . During this
reset, all threads awaiting the event are unblocked, along with the threads that start waiting
for the event after it is manually set and before it is manually reset . When the PulseEvent
function is used with a manual reset event, the event is switched to a signaled state, all
threads awaiting the event are unblocked, and the event is switched to a non-signaled state .

When an automatic reset event is set to a signaled state by calling the SetEvent function, only
one thread awaiting execution is unblocked . Then, the kernel switches the event to a non-
signaled state . An event remains in a signaled state until one thread is unblocked . Then, the
event switches to a non-signaled state, while the rest of the threads awaiting the event re-
main blocked . When using the PulseEvent function with an automatic reset event, the event
switches to a signaled state . If there are threads awaiting the event, one thread is unblocked .
Then, the event switches to a non-signaled state even if no threads have been unblocked .

A point-to-point message queue is designed for synchronization when it is necessary to
transmit additional information . It uses minimum resources and is designed for maximum ef-
ficiency . It is used by the power-management subsystem and Plug and Play . A point-to-point
message queue can be named or unnamed . Named point-to-point message queues provide
synchronization among different processes . Point-to-point message queue synchronization
is achieved by using standard WaitForSingleObject and WaitForMultipleObject functions .
After a point-to-point message queue operation finishes, its handle must be freed by calling
a standard CloseHandle function .

The main API for working with PPP event queues is listed in Table 3–15 .

98 Chapter 3 Operating System Architecture

TABlE 3–15 Functions for working with point-to-point message queues.

Function Purpose

CreateMsgQueue Creates and opens a user message queue .

CloseMsgQueue Closes an open message queue .

GetMsgQueueInfo Returns information about a message queue .

ReadMsgQueue Reads one message from the message queue .

ReadMsgQueueEx
Reads one message from the message queue and, optionally, returns se-
curity context of the message sender .

WriteMsgQueue Writes one message into a message queue .

OpenMsgQueue Opens an existing message queue according to a handle .

Interrupt Architecture
Practically all peripheral devices use interrupts to inform the operating system that certain
actions need to be taken to provide services for those devices . A device driver must process
an interrupt in order to provide a necessary service to a peripheral device .

A physical interrupt request (IRQ) is a hardware line by which a device sends an interrupt sig-
nal to a microprocessor . A system interrupt (SYSINTR) is a mapping of the IRQ for which an
OAL is responsible .

Some peripheral devices do not generate microprocessor interrupts . In those cases, a device
controller processes interrupts .

Under Windows Embedded CE, interrupt processing is divided into two parts: interrupt
 service routine (ISR) and interrupt service thread (IST) .

Each IRQ is associated with an ISR . Several interrupt sources can be associated with one ISR . If
an interrupt is rising, the kernel calls a corresponding ISR routine for that interrupt . When the
ISR execution completes, the routine returns a logical identifier of SYSINTR . The kernel checks
the logical identifier of an interrupt and sets an event that is associated with it . The scheduler
plans the execution of the IST that is waiting for the event, as shown in Figure 3–9 .

The main task of the ISR is to determine the system identifier of the interrupt (logical inter-
rupt) request and mask it . The ISR can also perform other time-critical tasks . However, it is
necessary to minimize the time of ISR operation, because during its operation at least those
IRQs that have equal priority level and those with lower priority are not served . An ISR can be
statically linked to the kernel or it can be installed by calling the kernel . In both cases, the ISR
should have no external dependencies, either explicit or implicit . System kernel architecture
supports nested interrupt processing by providing the ability to process higher-priority IRQs

 Interrupt Architecture 99

that arrive while the ISR runs . A developer must implement the necessary hardware support
for his or her device and for his or her ISR routines .

D
river

OAL
Kernel

Interrupts

Interrupt
Service Thread

Kernel
Interrupt
Handler

All IRQs
Disabled

All IRQs
Enabled

Higher-priority
IRQs Enabled

All IRQs Enabled Except the One Currently
being Processed

Set Event Scheduler Interrupts
Enabled

Interrupt
Service
Routing

Ev
en

t

In
te

rr
up

tD
on

e(
)

SY
SI

N
TR

IR
Q

FIguRE 3–9 Interrupt handling

If the processor architecture supports multiple hardware IRQs, then the developer must
 register the ISR routine in the OAL for each IRQ . For processors with one IRQ, such as ARM,
the kernel calls one predetermined procedure that must be implemented in the OAL, and the
developer can register separate installable ISRs in the kernel .

The kernel loads the installable ISRs dynamically while executing the LoadIntChainHandler
function . The use of the installable ISR (IISR) implies that the kernel has registered the ISR
for a designated IRQ, which initiates calling a chain of installable ISRs (NKCallIntChain) and
returns a logical identifier of the SYSINTR to the kernel . Processors with one IRQ, such as
ARM, require that initiating a call to a chain of interrupts be performed by a predetermined
 function that processes interrupts (OEMInterruptHandler) .

When calling the NKCallIntChain function, the kernel calls the ISRs that were registered by
calling LoadIntChainHandler on a first-in, first-out (FIFO) basis . If the IISR procedure that has
been called does not process a specified interrupt, it returns SYSINTR_CHAIN, and the kernel
proceeds to call the next IISR procedure . If the IISR procedure that has been called is able
to process a specified interrupt it returns a non-SYSINTR_CHAIN identifier, and the kernel
 returns a specified identifier; the rest of the ISRs are not called .

100 Chapter 3 Operating System Architecture

The IST performs the bulk of processing . The IST is a regular system thread that has a high
enough priority for handling the tasks of processing a specific interrupt for a specific device .
An IST is usually a part of the driver . An IST must perform at least the following actions:

 1. It creates a standard event (by using the CreateEvent function) .

 2. It registers the event in the kernel for a certain logical identifier of SYSINTRs (by using
the InterruptInitialize function) .

 3. It waits for an event associated with the interrupt (by using the WaitForSingleObject
function) .

 4. It notifies the kernel at the end of processing that the interrupt is done (by using the
InterruptDone function) .

If a driver uses the installable ISR, then it can load the IISR (by using the LoadIntChainHandler
function); configure it (by using the KernelLibIoControl function), and, when the driver
is finished, unload IISR (by using the FreeIntChainHandler function) . When the
FreeIntChainHandler function is called, the IISR code is not named when processing a cor-
responding IRQ, but it remains in the memory . When the LoadIntChainHandler is called the
next time, the same IISR procedure uses the previously loaded code . Windows Embedded CE
6 .0 includes a configurable IISR procedure that has a common purpose (Generic Installable
ISR– GIISR) . Its source code is located in the \Public\Common\Oak\Drivers\GIISR directory .

 101

Chapter 4

Build System
The Microsoft Windows Embedded CE development toolset uses a unified build system . A
developer can build an operating system (OS) from the Visual Studio 2005 integrated
environment or from a command-line interface . Visual Studio 2005 menu items launch the
necessary batch files . The build tools suite is composed of a set of batch files (batch files)
and console utilities . Designated environment variables and the parameters that are passed
during calls to the build system control the build process . Batch files initiate environment
variables during the initial stage by calling PBInitEnv .bat, which then calls Wince .bat with the
necessary parameters . The file blddemo .bat is the main batch file that controls the overall
build system . It in turn launches other batch files and build utilities, which can then launch
further batch files or utilities of their own, as needed .

The batch files used by the build system have documentation in the internal comments and
in Help, which makes it possible to trace the entire chain of calls to batch files and utilities .
The Nmake (Nmake .exe) utility is ultimately used for compiling and linking . It uses all the
necessary tools for the chosen processor architecture .

The tools suite and the input files for building the system are located in the catalog directory
tree, the root of which is determined by the environment variable _WINCEROOT (by default,
it is the WINCE600 directory in the disk’s root) . The subdirectory structure is designed in such
a way that the hardware-dependent part (Platform catalog) is separated from the hardware-
independent part (Public and Private catalogs) of the operating system . The functionality of
an OS image can be either set through Platform Builder’s user interface (UI), or more directly
by setting environment variables within the build window .

In order to select a necessary functionality of the OS image, it is necessary to set environ-
ment variables of the image, which appear as SYSGEN_XXX . The usual method for setting
environment variables of the build is to select items of the Platform Builder catalog .
Additional environment variables can be specified in the OS design settings, as well as
directly from a command-line window by using the main build batch file, blddemo .bat .

The information about building separate components and the OS image is contained in
various configuration files . The Dirs files, Sources files, and Nmake configuration files are used
for building modules, whereas .bib, .reg, .dat, and .db files are used for building a binary
run-time image . The roles of these files are discussed later in this chapter .

The end result of a build process is a monolithic run-time image that can be loaded onto an
emulator or a target device for subsequent debugging .

102 Chapter 4 Build System

Directory Tree of the Build System
An operating system is built from a directory tree (catalog hierarchy) . Table 4–1 lists standard
subdirectories of the root directory and descriptions .

TABlE 4–1 Standard subdirectories.

Directory Description

SDK Contains compilers and link utilities for supported platforms (x86, ARM, SH4,
Microprocessor without Interlocked Pipeline Stages [MIPS]) . Additional utilities for
building a system image are located in the %_ WINCEROOT%\PUBLIC\COMMON\
OAK\BIN\I386 folder .

OSDESIGNS By default, this directory contains the OS designs that are in progress . Each
 subdirectory corresponds to a named design of the operating system . An OS
 design consists of various modules, such as tools and drivers .

PLATFORM The specified directory contains the hardware-dependent part of the operating
system, such as board support packages (BSPs) and drivers . Subdirectories contain
the implementation of OEM adaptation layer (OAL) and drivers for a specific
 hardware platform . If a custom BSP needs to be created, its implementation is also
located in that directory . The Common subdirectory contains the common
platform code, including auxiliary libraries for writing the BSP and drivers .

PUBLIC Contains hardware-independent components of the operating system .

PRIVATE Contains the source code of the operating system . Windows Embedded CE cre-
ates this directory if the Shared Source feature is chosen and the additional license
agreement is accepted during the installation . After Platform Builder is installed,
the license agreement is located in the following file: \Program Files\Microsoft
Platform Builder\6 .00\source .rtf .

OTHERS Contains various components that for a variety of reasons were not included in the
above directories, such as:

n ATL8, which contains libraries, header files, and initial files for debugging ATL
 applications .

n DotnetV2, which contains executable .NET files for supported processor archi-
tectures .

n Edb, which contains executable modules for supporting Enhanced Database
files .

n SQLCE20, which contains SQL Compact Edition libraries for each supported
processor architecture .

n VisualStudio, which is a utility for working with devices for Visual Studio .

3RDPARTY Directory for own components, such as those that were cloned from Public or
Private . It is independently created by a developer and, similar to Public, it is
 automatically scanned for catalog files .

Let us take a closer look at the subdirectories of the Public directory, as shown in Table 4–2 .

 Directory Tree of the Build System 103

TABlE 4–2 Subdirectories of the Public directory.

Directory Purpose

CEBASE Device templates for thin client, gateway, and so on .

CELLCORE Components for working in cellular networks .

COMMON The CATALOG subdirectory contains the Platform Builder catalog . The OAK
subdirectory contains common components of the operating system, files
that manage the system build process, and auxiliary utilities .

DATASYNC Components for supporting synchronization of Windows Embedded CE de-
vices with desktop computers .

DCOM Components to support DCOM .

DIRECTX Support for DirectX .

GDIEX Support for GDI+ .

IE Internet Explorer 6 .0 and additional modules .

NETCFV2 For including .NET Compact Framework into the image .

OSTEST Windows Embedded CE Test Kit (CETK) .

PBTOOLS Example of implementing an extension for Performance Monitor .

RDP Support for Remote Desktop Protocol (RDP) .

SCRIPT Script support for: Microsoft JScript 5 .5 and VBScript 5 .5 .

SERVERS Servers: HTTP, FTP, UPnP, OBEX, Telnet, and so on .

SHELL System shells including Standard Shell, Explorer Browser, and CEShell .

SHELLSDK
Application programming interface (API) shells of Pocket PC 2002 and
AYGShell API .

SPEECH Support for Microsoft Speech API (SAPI) 5 .0 .

SQLCE For including SQL CE in the image .

VOIP Support for Voice over IP (VoIP)–based applications and SIP-based services .

WCEAPPSFE WordPad and Inbox .

WCESHELLFE Windows Embedded CE shell components .

Most subdirectories in the Public directory contain Cesysgen, OAK, and SDK folders .
Cesysgen contains files, including header files, DEF files for generating DLLs, and other files
used in the build process, that are filtered based on selected OS functionality . The OAK folder
contains libraries and configuration files that are necessary for building a component . The
SDK folder contains auxiliary files for building applications that use the functionality of a
specified component . The DDK folder contains files that are needed for developing drivers .

104 Chapter 4 Build System

Environment Variables of the Build System
As mentioned above, the OS build process is controlled through environment variables . An
OS design is defined by what environment variables it sets . Each OS design has an associ-
ated PBInitEnv .bat file that is called to configure the build environment for that OS design .
PBInitEnv .bat is called either when a new build window is opened through the Build Open
Release Directory in the Build Window menu item in Platform Builder, or when an OS build is
initiated through the Platform Builder UI . A sample PBInitEnv .bat file is as follows:

@echo off

REM Initial environment configuration

set _PB_INSTALL_ROOT=C:\PROGRA~1\MI0D56~1\6.00

set USING_PB_WORKSPACE_ENVIRONMENT=1

set _WINCEROOT=C:\WINCE600

set _FLATRELEASEDIR=C:\WINCE600\OSDesigns\CEBook\CEBook\RelDir\ _

DeviceEmulator_ARMV4I_Debug

set LOCALE=0409

set _PROJECTROOT=C:\WINCE600\OSDesigns\CEBook\CEBook\Wince600\DeviceEmulator_ARMV4I

REM Workspace and configuration variables

set PBWORKSPACE=C:\WINCE600\OSDesigns\CEBook\CEBook\CEBook.pbxml

set PBWORKSPACEROOT=C:\WINCE600\OSDesigns\CEBook\CEBook

set PBCONFIG=Device Emulator ARMV4I Debug

REM Call wince.bat

call C:\WINCE600\public\COMMON\OAK\MISC\wince.bat ARMV4I CEBook DeviceEmulator

REM Make sure all build options are turned off

set IMGNODEBUGGER=

REM Anchored features

set SYSGEN_WCETK=1

REM BSP features

REM Misc settings

set WINCEDEBUG=debug

set PATH=%PATH%;C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\ _

Microsoft Platform Builder\6.00\cepb\IdeVS

REM Configuration environment variables

REM Build options

set IMGEBOOT=1

REM Project settings

set _USER_SYSGEN_BAT_FILES=C:\WINCE600\OSDesigns\CEBook\CEBook _

\Wince600\DeviceEmulator_ARMV4I\OAK\MISC\CEBook.bat

REM Locale options

set IMGNOLOC=0

set IMGSTRICTLOC=0

As the code sample shows, PBInitEnv .bat calls Wince .bat . Wince .bat is where the majority of
environment variables are then set . Table 4–3 describes some of the more common environ-
ment variables .

 Image Build Modes 105

TABlE 4–3 Environment variables.

Name Purpose

_WINCEROOT Build tree root .

_PUBLICROOT PUBLIC (%_WINCEROOT%\PUBLIC) directory .

_PROJECTROOT OS design build directory .

_PLATFORMROOT PLATFORM (%_WINCEROOT%\PLATFORM) directory .

_TGTCPU Architecture of the processor for which the system is built .

_TGTPLAT Target hardware platform (BSP) .

_TGTPROJ Name of the operating system design .

_FLATRELEASEDIR A directory into which all built modules and configuration files are cop-
ied for a subsequent build of a binary image of the operating system .

_DEPTREES Specifies which Public directories are processed during the Pre-sysgen
Build and Sysgen stages .

CL The compiler, Cl .exe, uses this variable . If defined, it appends arguments
in the command line .

LINK The linker, Link .exe, uses this variable . If defined, it prepends arguments
in the command line .

Variable of

SYSGEN_XXX type

Adds a required component to the OS build .

Variable of

BSP_XXX and

BSP_NOXXX type

Specifies which BSP components need to be included or excluded dur-
ing the build .

Variable of

MGXXX and

IMGNOXXX type

System image settings (KITL, Kernel Debugger) .

Variable of

PRJ_XXX type

Additional project settings .

Image Build Modes
There are three main modes for building an image: Debug, Release, and Ship . In terms of
build options, Debug and Release modes are mostly as you would expect for Visual Studio,
but they also control some additional settings that are Windows CE specific . In the Visual
Studio integrated environment, you can select a build mode in the Configuration Manager
window that can be called from the Build menu by choosing the Configuration Manager
submenu . You can also set Debug or Ship modes from a build window by setting the
environment variables WINCEDEBUG or WINCESHIP, as described in more detail below .

106 Chapter 4 Build System

In Debug mode, the Kernel Debugger and a Kernel Independent Transport Layer (KITL)
 transport mechanism are enabled by default . The debugger outputs verbose informa-
tion, the OS run-time image has a bigger size, and it is executed relatively slowly . This type
of build is not used very often for building an operating system . It is needed only when
it is necessary to debug all modules of the operating system or to use debugging zones .
It may also be needed for debugging the BSP and drivers . For that mode, the values are:
WINCEDEBUG=DEBUG and WINCESHIP=0 .

In Release mode, most of the debugging tools are disabled by default . However, because the
Windows CE Kernel Debugger is an OS component, it can be added to the run-time image
and used . Also note that RETAILMSG macro messages continue to be displayed . For that
mode, the values are: WINCEDEBUG=RETAIL and WINCESHIP=0 . In Windows Embedded
CE 6 .0, the Kernel Debugger is a component; therefore, it can be added to the run-time im-
age . If you add kernel support to the image, you can debug subprojects of the operating sys-
tem, drivers, and so on without entering Debug mode of the operating system’s code .

A final run-time image available to the end user is usually built in Ship mode, with the de-
bugging tools completely excluded from the image . Ship mode uses the following settings:
IMGNOKITL=1 (KITL is excluded from the image), IMGNODEBUGGER=1 (Kernel Debugger is
excluded from the image), WINCEDEBUG=RETAIL, and WINCESHIP=1 . An image built in Ship
mode does not output debugging information, and it suppresses the output of some of the
error messages .

Build Stages
The build process generally consists of five stages, as follows:

 1. Pre-sysgen .

 2. Sysgen (system generation) .

 3. Post-sysgen Build .

 4. Build Release Directory (Buildrel) .

 5. Make Run-Time Image (Makeimg) .

A typical diagram of building an image (without the Pre-sysgen stage) is shown in Figure 4–1 .

The batch file Cebuild .bat manages the Pre-sysgen, Sysgen, and Post-sysgen Build stages;
BuildRel .bat builds a flat build directory; and Makeimg .exe builds the final image . Figure 4–2
shows the main calls to the files responsible for the build .

 Build Stages 107

OS Design

Component
Directory

Sysgen
Stage

Post-
Sysgen
Build
Stage

BSP/
Subproject

Code

Buildrel Stage

%_FLATRELEASEDIR%

NK.BIN

Makeimg
Stage

FIguRE 4–1 Build stages for building a run-time image

Blddemo.bat

Cebuild.bat

Build.exe

Nmake.exe

Sysgen.bat

Cesysgen.bat

Nmake.exe

BuildRel.bat

Makeimg.exe

Nmake.exe

SysgenPlatform.bat

FIguRE 4–2 Calls to files during run-time image creation

108 Chapter 4 Build System

Pre-Sysgen Build
During the Pre-sysgen stage, the OS components are compiled from Public and, possibly,
Private directories (the list of subdirectories that are being processed is contained in the
 environment variable _DEPTREES) . A complete Pre-sysgen build is never used—components
of the operating system come in a preassembled form . You can rebuild a certain component
from the command line or from a design interface without having to perform a complete
Pre-sysgen build .

If it is necessary to modify an operating system component located in Public or Private direc-
tories, it is necessary to clone a component and apply changes to your own copy by possibly
moving it to a design directory such as BSP or 3RDPARTY, depending on the purpose of that
component .

Sysgen
After Pre-sysgen, we have a full set of components and technologies that the OS provides .
Sysgen performs several tasks, including dependency resolution, component filtration, and
building OS modules . The built modules include only those technologies and enhance-
ments that were added manually by the developer and automatically during dependency
 resolution . During the Sysgen stage, the system processes subdirectories listed in the
_DEPTREES variable . The build process has to go through this stage at least once . It also
has to go through this stage each time an OS component is added or removed (through
the component catalog or directly by setting the SYSGEN_XXX variables) . The results of the
Sysgen stage are stored in the %_PROJECTROOT%\cesysgen directory . Filtered libraries are
copied into oak\lib, sdk\lib, and ddk\lib subdirectories; header files and .def files are
copied into oak\inc, sdk\inc, and ddk\inc, as shown in Table 4–4 . Modules that are built
 during Sysgen are copied into the oak\target subdirectory . During this stage of a build pro-
cess, the main tool is the Sysgen .bat file (located in the %_WINCEROOT%\PUBLIC\COMMON\
OAK\MISC directory) . The functionality is determined by the environment variables by means
of launching the batch file %_PROJECTROOT%\OAK\misc\cesysgen .bat .

TABlE 4–4 Filtered and resulting files.

Filtered files Resulting files

Sdk\Inc* .* Cesysgen\Sdk\Inc

Oak\Inc* .* Cesysgen\Oak\Inc

Ddk\Inc* .* Cesysgen\Ddk\Inc

Oak\Files\Common* .* Cesysgen\Oak\Files

 Build Stages 109

The filtration of header files and .def files is done by using the Cefilter .exe utility . While
 processing files, Cefilter .exe is looking for the following comments in the file text, and it
 performs necessary filtration actions:

// @CESYSGEN IF [!]<Component> [[OR | || | AND | &&] [!]Component]

// @CESYSGEN ELSE

// @CEYSSGEN ELSE IF [!]<Component> [[OR | || | AND | &&] [!]Component]

// @CESYSGEN ELSEIF [!]<Component> [[OR | || | AND | &&] [!]Component]

// @CESYSGEN ENDIF

If the file is not C/C++, then suitable comment symbols are used, such as a semicolon or
pound sign instead of two slashes . In the code sample above, <Component> represents vari-
ables that are generated from the SYSGEN_XXX type variable during the Sysgen stage . These
can be variables that determine modules and appear as <module_MODULES_<submodule>
(for example, DCOM_MODULES_DLLHOST, CE_ MODULES_SHELL, IE_MODULES_WININET),
or <module>_<component> (e .g ., DEVICE_DEVCORE, FILESYS_FSHEAP) .

To launch Sysgen from a Visual Studio menu, it is necessary to select Build submenu, and
then Build <Design name> . Alternatively, you can also launch Sysgen from the command-line
build window by running the Blddemo .bat –q command .

The Sysgen stage takes a considerable amount of time to complete . In order to reduce
the execution time of the Sysgen stage, in the _DEPTREES variable you can specify only
those directories that must go through Sysgen . To do that, it is necessary to create a
%_TGTPROJ% .bat batch file in the OS design directory (_PROJECTROOT) with the following
contents: set _DEPTREES=<dir1> <dir2>… <dirX>, where dirX is a subdirectory in the Private
or Public directories .

Post-Sysgen Build
During the Post-sysgen build stage, BSP and subprojects that are added to the OS design are
built . The build process uses header files that were filtered during the previous stage, .def
files, and static libraries . Errors that occur during that stage are usually caused by a lack of
the necessary functionality and are resolved by adding the required components (setting
environment variables) and subsequently running the Sysgen stage again . BSP develop-
ers have an opportunity to perform Sysgen BSP filtration of BSP components depending
on the OS functionality they choose (it must be supported by the BSP) . To accomplish that,
the BSP directory must have a Cesysgen subdirectory that contains a Makefile file . Most
BSP packs that provide this functionality simply include the \PUBLIC\COMMON\cesysgen\
CeSysgenPlatform .mak file in their Makefile files .

To launch a build of the BSP and all of the subprojects, from the Visual Studio menu, select
Build, Advanced Build Commands, and then select Build Current BSP and Subprojects .
Alternatively, from a command line, type Blddemo .bat –qbsp . To build an individual sub-
project, from the Visual Studio menu select Build from the Subproject context menu .

110 Chapter 4 Build System

Alternatively, from a command line, type Build .exe after changing to the Subproject
 directory, which contains the Dirs or Sources files .

Build Release Directory (Buildrel)
During the Buildrel stage, the files received after Sysgen and Post-sysgen Build stage pro-
cessing are copied to a flat build directory (_FLATRELEASEDIR), where a run-time image of
the operating system is being built . The directory is called flat because all files are copied
without file paths . The content of the following directories is copied to the _FLATRELEASEDIR
directory .

%_PROJECTROOT%\Cesysgen\Oak\Files

%_PROJECTROOT%\Oak\Files

%_PROJECTROOT%\Cesysgen\Oak\Target\%_ TGTCPU%\%WINCEDEBUG% %_PROJECTROOT%\Oak\Target\%_

TGTCPU%\%WINCEDEBUG%

%_PLATFORMROOT%\%_TGTPLAT%\Target\%_ TGTCPU%\%WINCEDEBUG%

%_PLATFORMROOT%\%_TGTPLAT%\Files

%_PLATFORMROOT%\%_TGTPLAT%\cesysgen\Files

To enable automatic copying of executable files during a module build, it necessary to set
the WINCEREL variable in the Sources configuration file . This ensures that when the initial
file of one component (such as the BSP) is changed, you do not have to go through the
Buildrel stage again . Despite the ability to copy executable files automatically during the
build process, you have to run the Buildrel stage at least once in order to copy all necessary
 executable and configuration files . When changes are made to configuration files, the
Buildrel stage has to be run again .

For NTFS volumes, hard links to files are used instead of file copies by default . When editing
hard-linked files, it is important to keep in mind that this modifies the initial files directly . The
BUILDREL_USE_COPY environment variable sets the copying method .

Copying can be launched manually . To do that, from the Visual Studio main menu, select
Build, and then Copy Files to Release Directory . Alternatively, from the command-line build
window, type BuildRel .bat .

Make Run-Time Image (Makeimg)
During the final stage, the content of the flat build directory (_FLATRELEASEDIR) is as-
sembled into a binary run-time image named NK .BIN or NK .NB0 . The making of an image is
 managed by the Makeimg .exe utility . Let us look at the steps that need to be taken during
the Makeimg stage to form a monolithic image of the operating system .

First, the Fmerge .exe utility merges the following configuration files and initialization files:

 Build Stages 111

 1. The .bib files are merged into a CE .bib file (a configuration file that contains a list of files
and parameters for forming a monolithic image) .

 2. The .reg files are merged into a RegInit .ini file (registry initialization file) .

 3. The .dat files are merged into an InitObj .dat file (object store initialization file) .

 4. The .db files are merged into an InitDB .ini file (database initialization file) .

After than, the RegInit .ini file is compressed into a binary file named Default .fdf .

The system then localizes executable files and libraries by replacing the resources according
to a selected language, as determined by the LOCALE variable . At the end, the Romimage .exe
utility creates a binary image of the system from the files specified in Ce .bib . Romimage .exe
makes it possible to create a system image in several formats . The main format is a tagged
binary image of the system (.bin) . A ready .bin file can be converted into an absolute binary
format (NBx) or a 32-bit Motorola SRE format by using the CvrtBin .exe utility .

The image-build procedure can be launched manually . In order to do that, from the Visual
Studio main menu, select Build and then Make Run-Time Image . Alternatively, from the com-
mand line, run Makeimg .exe .

Table 4–5 lists the necessary build stages depending on changes in the OS design .

TABlE 4–5 Build stages required based on OS design changes.

BSP and Subprojects Image Settings
Adding/Removing Directory
Components

Sysgen - - +

Post-sysgen Build + Possible +

Buildrel Possible + +

Makeimg + + +

COnFIguRATIOn FIlES

Binary Image Builder (.Bib)
The .bib files describe the memory structure (ROM/RAM) and specify what files need to be
included into the image; they also contain additional configuration parameters related to the
memory . A merged .bib file named CE .bib, which the Romimage .exe utility uses for forming a
monolithic image, contains the following .bib files:

n BSP files (Config .bib, Platform .bib) .

n Files of selected Windows CE components (Common .bib, and so on) .

112 Chapter 4 Build System

n OS design files (Project .bib and subproject .bib files) .

The .bib files are text files . Their content is divided into the MEMORY, CONFIG, MODULES,
and FILES sections .

MEMORY Section
This section is usually located in the Config .bib files, and it determines the allocation of the
virtual address space among applications and the system image . Each entry in the MEMORY
section that describes a memory region contains the following fields: region name, initial
memory address, size, and type . The fields are written as one line and are separated by
 spaces and/or tabular symbols . Region names have to be unique except for the reserved
name, RESERVE, which can be used more than once . Regions that contain RESERVE in their
name reserve the memory regions that are not used by the system image .

The types of memory that show how each memory region will be used are listed in
Table 4–6 .

TABlE 4–6 Memory region types and usage.

Memory Type Purpose

RAM Used by the system kernel for the program and file system in the memory .
This type of region must be aligned by page boundaries (4 KB) .

RAMIMAGE This type of memory region is marked as read-only . This region stores the sys-
tem image, which includes the execute in place (XIP)module that is executed
locally . On the physical level, this can be a memory region where the system
image or flash memory (which is addressed by the processor directly) is load-
ed . The Romimage .exe utility creates a binary file (.bin) for this region type .
This type of region must be aligned by page boundaries (4 KB) .

RESERVED Romimage .exe does not process this type of region . Developers process and
use this memory type for information purposes, such as specifying the
memory region that is used by the device buffer .

FIXUPVAR Enables you to set values of the global variables of the kernel during the
MAKEIMG stage . The starting address for a variable is always 0, and instead of
the size in bytes, it specifies a needed value .

COnFIg Section
This section is usually located in the Config .bib file and is optional . It contains additional
 parameters for configuring the system image . Listed below are some of the parameters that
can be used:

n AuTOSIZE (On|OFF) enables you to automatically allocate space that the run-time
image does not use for applications . By default, Romimage .exe disables AUTOSIZE .

 Build Stages 113

n COMPRESS (On|OFF) enables compression of the files that are loaded into the
memory and are not executed in place (XIP) . The compression component has to be
present in the system image in order to support file compression functionality . By
default, Romimage .exe enables compression .

n ROMSTART is a virtual address of the ROM beginning .

n ROMSIZE is the size of the ROM in bytes .

n ROMWIDTH is the width of the ROM in bits .

If the ROMSTART, ROMSIZE and ROMWIDTH variables are set, Romimage .exe builds a
run-time image in the absolute binary data format (.nb0 or .abx) .

n SRE (On|OFF) is used for creating an image in Motorola-S format . This option is dis-
abled by default .

Table 4–7 shows a sample entry in the CONFIG section .

TABlE 4–7 COnFIg section entry.

NK 8C800000 00800000 RAMIMAGE

RAM 8C050000 007B0000 RAM

nk .exe:gpdwVariable 00000000 00000006 FIXUPVAR

MODULES Section
This section contains a list of system image modules that are executed in place without be-
ing additionally loaded into the memory and cannot contain more than 2,000 modules . This
 section may include all executable modules and libraries except for the applications written
with managed code, because the latter require that they are additionally loaded into the
memory . Each entry in the MODULES section that describes an included module contains the
following fields: name, path, region, and attributes . The fields are written on one line and are
separated by one or more spaces or tabular symbols .

The Name field denotes the file’s name in the image, and it may not coincide with the initial
name of the file; paths are not used . A full path to a module in the file system is stored on
the developer’s machine . The Region field denotes the RAMIMAGE regions specified in the
MEMORY section into which the module is added . Table 4–8 shows some possible attribute
values, which can be combined .

114 Chapter 4 Build System

TABlE 4–8 Attribute values.

Attribute Purpose

S System file .

H Hidden file .

R Compress the resources . Applies to the MODULES section only .

D Disables module debugging .

K or Z
Module needs to be prepared for execution in the kernel address space (to map
the address) .

U Do not compress the file .

Q

Module needs to be prepared for execution in the user address space and the
kernel address space . The line,

file .dll $(_FLATRELEASEDIR)\file .dll SHQ is converted into

k .file .dll $(_FLATRELEASEDIR)\file .dll SHK and

file .dll $(_FLATRELEASEDIR)\file .dll SH .

C Compress module .

N Mark module as non-trusted . Applies to the MODULES section only .

P Do not check CPU type specified in file header . Usually used for resource libraries .

X
Sign module and include signatures to the ROM . Applies to the MODULES section
only .

M

Signals that the kernel must not demand page the module . By default, the kernel
demand pages modules as needed . This flag is usually set for system services that
are called in paging, or which are in out-of-memory (OOM) condition . Applies
only to the MODULES section .

U Keep module uncompressed .

A sample entry in the MODULES section:

INIT.EXE $(_FLATRELEASEDIR)\INIT.EXE NK SH

MYDLL.DLL $(_FLATRELEASEDIR)\MYDLL.DLL NK SHC

FILES Section
Files from this section are loaded into the device memory region that is available for applica-
tions . As a rule, these files include program data and managed code applications files . The
files from this section are compressed by default . Before being loaded in the memory, the
compressed files are decompressed . The file entry format is the same as one in the MODULES
section .

 Build Stages 115

Object Store Initialization Files (.Dat)
The .dat files are used for initializing a file system in the memory (RAM file system) . During
the MAKEIMG stage, .data files are merged into the InitObj .dat file . The resulting InitObj .dat
file is used by Filesys .dll for creating a directory tree of the file system in the memory . Entries
in the DAT files have the following format:

root:[-Directory(“<directory name>”)] [-File(“<final_file_name>”, “<initial_file>”)]

where <directory_name> is the name of the directory, <final_file_name> is the final name of
the file that is copied from the \Windows directory, and <initial_file> is the name of the initial
file in the \Windows directory .

The following content of a .dat file is created the Program Files directory and its My Projects
subdirectory and is copied by the MyProg .exe file into the Program Files directory:

Root:-Directory(“Program Files”)

Directory(“\Program Files”):-Directory(“My Projects”)

Directory(“\Program Files”):-File(“MyProg.exe», “\Windows\MyProg.exe”)

Registry Initialization Files (.Reg)
Registry files form the initial registry of the operating system . The format of Windows
Embedded CE registry files is similar to that of the desktop version of Windows . During the
MAKEIMG stage, all registry files in the build directory (_FLATRELEASEDIR) are merged into
the RegInit .ini file in the following order:

 1. Registry files of components of the operating system (Common .reg, IE .reg, Wceapps .
reg, Wceshell .reg) .

 2. Registry files of subprojects that were added to the OS design .

 3. Project .reg is created for each design of the operating system . It enables you to add
general configuration settings to the current design and to redefine registry settings of
the OS components and subprojects .

 4. Platform .reg is usually provided by the BSP manufacturer and includes the initial regis-
try settings for hardware (BSP and device drivers) .

Therefore, Project .reg settings can redefine the component settings, whereas Platform .reg
settings can redefine the settings for all other files .

Database Initialization Files (.Db)
During the MAKEIMG stage, .db files are merged into an InitDB .ini file and are used for ini-
tializing EDB databases that are included in the image . The entry format is described in detail
in the supplied .db files .

116 Chapter 4 Build System

Component and Module Build
Build .exe utility manages the process of compiling and linking components and modules .
Dirs and Sources files are used for telling Build .exe where to build from (Dirs files) and what
to build with (Sources files) .

Figure 4–3 shows a diagram of the build process managed by Build .exe .

Build.exe

Nmake.exe

Current Directory

Component Directory

%_WINCEROOT%\
PUBLIC\OAK\MISC
Directory

DIRS

SOURCES

MAKEFILE

MAKEFILE.DEF

Sources.cmn

.Exe
.Dll
.Lib

FIguRE 4–3 Components and modules build process

Let us examine the build process in more detail .

Dirs Files
Dirs files tell Build .exe what subdirectories in the current directory that the build needs to
take place in, which is similar to launching Build .exe in each of the indicated subdirectories .
The structure of a Dirs file is straightforward .

As an example, the following file content is prescribed by Build .exe in order to perform a
build in the Oak and SDK subdirectories of the current directory:

DIRS=Oak SDK

Moving from one subdirectory to another continues until one subdirectory has no Dirs file
present; a search for the Sources file is conducted in this directory . If the Sources file is found,
Build .exe utility launches Nmake .exe and passes Makefile (located in the same directory as
Sources) to Nmake .exe as a parameter .

 Component and Module Build 117

Makefile Files
The Makefile file contains the rules for Nmake .exe that are necessary for the build . In most
cases, the Makefile file contains just one line including the content of Makefile .def file:

!INCLUDE $(_MAKEENVROOT)\makefile.def.

Makefile .def file contains general rules for compiling and linking of the entire Windows
Embedded CE operating system . Aside from the general rules, the file has a directory that
includes the content of the SOURCES file of the current directory:

!INCLUDE $(MAKEDIR)\sources.

Sources Files
The Sources file contains build information for a specific component . The general entry
 format for the Sources file is as follows:

<Variable name> = <Value 1> [<Value 2> … <Value M>] \

<Value M+1> \

…

<Value N>

If a variable can have several values, the values are separated by a space . To merge several
lines, the backslash symbol is used . Let us look at the variables that are used in the Sources
file, as shown in Table 4–9 .

TABlE 4–9 Sources file variables.

Variable Name Windows Embedded CE Shell Components

SOURCES List of initial files .

TARGETNAME Name of resulting file without an extension .

TARGETTYPE Type of resulting file:

n PROGRAM—application .

n DYNLINK—dynamic-link library .

n LIBRARY—static library

Depending on the type, the resulting file receives the extension .exe, .dll, or
 .lib, respectively .

TARGETLIBS List of static libraries (.lib) and object files (.obj) that are necessary for
 linking an executable module (.exe) or a dynamic library (.dll) . This variable
is ignored if a static library is being built .

SOURCELIBS List of static libraries (.lib) used for linking a static library from several
 libraries .

118 Chapter 4 Build System

Variable Name Windows Embedded CE Shell Components

RELEASETYPE Location of the intermediate and final build files:

n LOCAL—in the subproject directory .

n OAK—%_PROJECTROOT%\Oak\Target or %_ PROJECTROOT%\Oak\Lib .

n PLATFORM—%_TARGETPLATROOT%\Target or %_
TARGETPLATROOT%\ Lib .

POSTLINK_PASS_CMD Command to be executed after linking . As a rule, it is used for copying ad-
ditional files into the build directory .

PRELINK_PASS_CMD Command to be executed before linking .

Sources.cmn File
The Sources .cmn file enables you to determine general build settings for several projects .
The content of this file is included in Makefile .def by the directory before the content of the
Sources file . Sources .cmn must be located in the upper directory that contains the Dirs file .

Build Errors
The presence of a Build .err file in the root directory of the build is an indication that an er-
ror exists . The main tool for analyzing errors during the build stage is the Output window in
Visual Studio’s integrated interface and the Build .log file located in the root directory of the
build system (_WINCEROOT) .

Sysgen Error
During the Sysgen stage, errors usually occur when the OS design does not have necessary
components . This problem is solved by adding a necessary component by using Platform
Builder directory and setting certain environment variables . Errors can also occur while edit-
ing the content of Public and Private directories directly .

Post-Sysgen Build Error
During this stage, compiling and linking errors occur . Such errors can be caused by a lack of
the necessary header files and libraries . Because filtered files are used during this stage, the
problem can usually be resolved by adding the necessary components with a subsequent
execution of the Sysgen stage .

Buildrel Error
Copying errors occur during the Buildrel stage . Possible causes of errors are the following:

 Component and Module Build 119

n Insufficient disk space .

n Blocking of the simultaneously used files .

n Files marked as read-only .

Makeimg Error
The most common errors during this stage are the following:

n The absence of a file specified in CE .bib in the flat release directory (_FLATRELEASEDIR) .

n Syntax errors in the registry files .

n The image size exceeds the value specified in Config .bib .

 121

Chapter 5

Board Support Package (BSP)
The board support package (BSP) enables a developer to build a run-time image of the
Windows Embedded CE operating system for a specific hardware platform . Each hardware
platform for which an operating system needs to be built must include its designated BSP .
Usually, building a BSP is the most labor-intensive part of creating a device . Building a BSP
requires that the developer is familiar with the hardware architecture as well as the architec-
ture of the operating system . All of the interaction of the operating system with the device is
implemented in BSP, and therefore, the quality of the BSP determines the resulting quality of
the device .

The tools supplied with Platform Builder for CE 6 .0 R2 contain several examples of BSP imple-
mentation and at least one BSP for each supported processor architecture, as follows:

n ARM .

o Intel PXA27x Processor Development Kit (MainstoneIII) .

o Texas Instruments SDP2420 Development Board .

o TI OMAP5912 Aruba Board .

o Voice over IP PXA270 Development Platform .

o Device Emulator .

n X86 .

o CEPC .

o HP Compaq t5530 Thin Client Development Platform .

n MIPS .

o NEC Solution Gear 2-Vr5500 Development Kit .

n SH4 .

o Renesas US7750R HARP (Aspen) Standard Development Board .

o STMicroelectronics STi7109 MB442 Development Platform .

The BSP contains the entire hardware-dependent source code that is necessary for creating
an abstraction of the operating system that is independent of a specific hardware platform
implementation . The main components of a BSP are as follows:

n Boot loader .

n OEM adaptation layer (OAL) .

n Drivers .

n Configuration files .

122 Chapter 5 Board Support Package (BSP)

The main tasks of the boot loader are to load a run-time image into the memory and
to move to its starting point . The boot loader can receive an OS image from a variety of
sources: the network (eboot), COM port (sboot), Universal Serial Bus (USB), flash card, hard
disk, and so on . A boot loader is not required for launching an operating system on a device;
the Windows Embedded CE 6 .0 operating system can function without a boot loader . The
 presence of a boot loader expedites the process of building a device, and on a production
device, it makes it possible to offer additional service functions such as reflash device
firmware, diagnostics, and so on .

A BSP includes the following components:

n OAl creates a kernel abstraction that is separate from a specific processor implemen-
tation; it includes code for interrupt processing, timers, IOCTL, etc .

n Drivers provide the operating system with an interface to the platform’s hardware
devices .

n Configuration files contain information needed by the build system in order to build
a run-time image with a given BSP .

Where can a device developer obtain a BSP? First of all, hardware manufac turers often in-
clude BSPs with their product . Second, as mentioned above, the development tool suite
has at least one BSP for each of the supported processor architectures, which can be used
directly or as a base for building a custom BSP . Finally, a device developer can use the most
suitable BSP that has an available source code as a base to build a custom BSP . In order to do
that, the device schematics or similar information must be available .

As mentioned above, the process of building a BSP is the most labor-intensive part of build-
ing a device, and thus, it is important to know what resources, libraries, and implementation
architecture Microsoft offers for building a BSP .

BSP Directory Structure
During installation, each BSP is deployed as a subdirectory of the Platform directory located
in the Windows Embedded CE 6 .0 directory tree root . All BSP shipped by Microsoft and
third-party BSP are installed there . The BSP that is being developed also needs to be located
in that directory .

Let us examine the typical structure of a directory used to build a BSP . Table 5–1 shows the
subdirectory names of a BSP and their purpose .

 BSP Directory Structure 123

TABlE 5–1 Standard BSP subdirectories.

Directory Name Purpose

CATALOG Mandatory directory . It contains a catalog file that publishes the BSP in the
Platform Builder catalog .

CESYSGEN Optional directory . It contains the Makefile file that is necessary for involv-
ing BSP in the Sysgen stage of building the operating system by making it
possible to filter the BSP functionality that is being built, depending on the
selected system components .

FILES Mandatory directory . It contains BSP configuration files, such as Platform .bib,
Config .bib, Platform .reg, Platform .db, etc . During the Buildrel stage, the files
are copied into a flat release directory (FLATRELEASEDIR) . If a BSP is involved
in the filtering process, the filtered files are copied into the CESYSGEN\FILES
directory then copied into a flat release directory (FLATRELEASEDIR) . It means
that if any changes were made to the files in this directory and the BSP sup-
ports file filtering, then in order for a new filtered version of the files to be
sent to FLATRELEASEDIR, it is necessary to perform the Sysgen stage of the
BSP . .

SRC Optional directory . It is present in all BSP packages included in Platform
Builder . It is a root directory for the source code that implements a BSP . The
BSP source code is built during the Post-sysgen Build stage; the build process
is controlled by the Dirs and Sources files . The developer has no requirements
to meet as far as implementation of the BSP source code tree is concerned .

Table 5–2 provides a listing of names of the main subdirectories of SRC directory and their
purpose as it applies to the BSP included in Platform Builder .

TABlE 5–2 Subdirectories of SRC directory.

Directory Name Purpose

BOOTLOADER Contains boot loader implementation .

BOOTLOADER\EBOOT Contains boot loader implementation for the network environment .

COMMON Contains common code for a specific BSP . Usually is a common part of the
boot loader and OAL .

DRIVERS Contains directories that store implementation of the platform drivers .

INC Contains header files .

OAL\OALLIB Contains source code for OAL implementation and configuration
build files .

OAL\OALEXE Contains configurations files (Sources, Makefile) for building the OAL .exe exe-
cutable file from the OAL .lib library . It links the OAL .lib library to the required
common libraries as well as other libraries . It may contain the function code
and the stub code for the functionality that is not implemented by OAL .

KITL Contains the source code and configuration files for building KITL .dll

124 Chapter 5 Board Support Package (BSP)

Boot loader
The boot loader is a standard part of any BSP . A boot loader performs at least the following
tasks:

n Hardware initialization .

n Platform initialization related to image loading onto a device .

n Loading of the operating system image into the memory (RAM and/or ROM) .

n Start the operating system by jumping to the OS entry point .

A boot loader can implement any additional functionality required during the development,
testing, or end-user device operation . The boot loader has no formal implementation
 requirements that need to be met .

Usually the boot loader is implemented as a component that is separate from the operating
system . The boot loader has its own configuration binary image builder (.bib) file located in
the Bootloader build directory along with the Sources and Makefile files .

The Platform Builder development toolset includes several auxiliary libraries for implement-
ing a boot loader . Table 5–3 provides the library names and locations .

TABlE 5–3 Boot loader library names and locations.

Name Location

BLCOMMON \PLATFORM\COMMON\SRC\COMMON\ BOOT

EBOOT \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\EBOOT

BOOTPART \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\ BOOTPART

ETHDBG \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG

The BLCOMMON library provides the infrastructure for implementing the boot loader . The
main task of this library is to provide implementation that initially supports Platform Builder
tools . The BLCOMMON library implements the majority of a boot loader’s common tasks . In
order to implement a boot loader for a specific hardware platform, it is necessary to utilize
the code of low-level hardware implementation as well as a pre-defined set of functions that
the BLCOMMON library calls . The Ethernet boot loader (EBOOT) library contains implemen-
tation for working with Dynamic Host Configuration Protocol (DHCP), Trivial File Transfer
Protocol (TFTP) and User Datagram Protocol (UDP), which can be used for implementing a
boot loader in a network environment . The BOOTPART library contains auxiliary functions
for working with partitions and for reading from and writing to flash media . The Ethernet
debugging libraries (ETHDBG) provide the functionality of a debugging network (Ethernet)
driver for some network cards . Table 5–4 shows the card names and implementation
locations .

 Boot Loader 125

TABlE 5–4 Interface cards and their locations.

Card Name Location

3COM 3C90X \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\3C90X

AMD Am79C970 \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\AM79C970

AMD Am79C973 \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\ AM79C973

Crystal CS8900A \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\CS8900

DEC/Intel DC21140 \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\DEC21140

National Semiconductor DP83815
(MacPhyter)

\PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\DP83815

NE2000-compatible \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\NE2000

RealTek RTL8139 and compatibles \PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\RTL8139

Figure 5–1 shows a simplified diagram for implementing a boot loader .

When the system starts, it passes the control to the address where the point of entry into the
Startup() function is located . This function is responsible for a low-level hardware initializa-
tion and for calling the C function Main(), which calls the BootloaderMain() function from
BLCOMMON . The BootloaderMain() function implements the main execution thread of the
boot loader by calling return call functions . The functions that determine the base execution
procedure are as follows:

n OEMDebugInit provides initialization of the debugging transport subsystem .

n OEMPlatformInit provides a high-level platform initialization .

n OEMPreDownload initializes services that are needed for loading an image .

n OEMlaunch performs initializations that are necessary after the image has been
loaded and jumps to the OS entry point .

In order to provide support for serial port operations, a developer utilizes the following
functions:

n OEMInitDebugSerial() .

n OEMWriteDebugString() .

n OEMWriteDebugByte() .

n OEMReadDebugByte() .

126 Chapter 5 Board Support Package (BSP)

OEMInitDebugSerial

Startup

Main

BootloaderMain

OEMDebugInit

OEMPlatformInit

OEMPreDownload

OEMLaunch

Image Load

Working with Flash

Working with
Ethernet

OEMWriteDebugString

OEMWriteDebugByte

OEMReadDebugByte

OEMStartEraseFlash

OEMContinueEraseFlash

OEMFinishEraseFlash

OEMIsFlashAddress

OEMWriteFlash

EbootInitEther Transport

EbootWaitForHostConnect

EbootEtherReadData

EbootGetDHCPAddr

OEMEthGetFrame

OEMEthSendFrame

OEMEthGetSecs

OEMMapMemAddr

OEMReadData

OEMShowProgress

FIguRE 5–1 Boot loader implementation

Usually, the OEMDebugInit() function calls the function OEMInitDebugSerial() for initializing
the debugging transport subsystem via a serial port . In order to load the image, the
BLCOMMON library calls the function OEMReadData(), which reads the transport protocol
data . By implementing the OEMShowProgress() function, a developer can display the
 progress of the image-load process . The OEMMapMemAddr() function is intended for cach-
ing the images designed for flash memory . If a network boot loader is implemented, usually
the EBOOT library is used (consisting of functions with the Eboot prefix), which is awaiting

 OEM Abstraction Layer 127

the OEMEthGetFrame(), OEMEthSendFrame(), and OEMEthGetSecs() functions to be imple-
mented . These functions usually call the corresponding functions of a matching debugging
network driver directly . In order to work with flash memory, a developer must implement
the following designated set of functions: OEMStartEraseFlash(), OEMContinueEraseFlash(),
OEMFinishEraseFlash(), OEMIsFlashAddress(), and OEMWriteFlash() . A developer may
 implement only the necessary functions instead of the others by using stubs .

OEM Abstraction layer
The OAL contains the code that creates an abstraction of the operating system kernel
 independent of a specific physical platform implementation . This enables the common
 kernel1 of Windows Embedded CE to function on several platforms .

The OAL implements the system’s starting code, interrupt processing code (ISR, support for
installed ISR, a table of interrupt request (IRQ) static mapping in system interrupt (SYSINTR),
and so on), power management code (On, Off, and Idle power states), timer code, and
 various IOCTL control codes (IOCTL_HAL_GET_DEVICE_ID, IOCTL_HAL_GET_UUID, and so on),
The OAL provides an interface to the system kernel by implementing a certain set of func-
tions and IOCTL .

At the same time, the system kernel provides the OAL with a set of functions that must be
used while implementing the OAL . Therefore, in Windows Embedded CE 6 .0, interaction be-
tween the kernel and the OAL is unified as much as possible, which is a result of architectural
changes in the kernel—the OAL is no longer statically linked to the operating system kernel .
Instead, the OAL is built into an executable file, OAL .exe, by being dynamically linked to the
kernel library (kernel .dll) .

In standard BSP implementations, the OAL layer is built in two stages and is located in the
following directories: \SRC\OAL\OALLIB, which contains the platform-specific code that is
built into a static library, and \SRC\OAL\OALEXE, which contains the code and the specific
build instructions for OAL .exe (it links OAL .lib to other libraries) . Furthermore, during the
Makeimg stage, OAL .exe is built into a run-time image as NK .exe, which is a traditional name
for the OS kernel in Windows CE . During the load of NK .exe by OAL .exe, the system kernel is
loaded dynamically (kernel .dll) .

As mentioned before, it is necessary to implement a predefined set of functions and IOCTL
control codes . Table 5–5 provides a list of some of the functions with their description .

1 One kernel per processor architecture (ARM, MIPS, SH4,x86) .

128 Chapter 5 Board Support Package (BSP)

TABlE 5–5 Predefined functions.

Name Purpose

OEMInitDebugSerial The first Original Equipment Manufacturer (OEM) function called by
the kernel . Provides initialization of the debugging input/output (I/O)
through a serial port .

OEMWriteDebugByte Writes a byte into a debug port .

OEMWriteDebugString Writes a string into a debug port .

OEMReadDebugByte Reads a byte from a debug port .

OEMInit This is the second OEM function that the kernel calls . It provides initial-
ization of all of the required hardware, including timer, bus, and I/O; ISR
registration except for ARM and Kernel Independent Transport Layer
(KITL) initialization . The function is called at an early stage of system ini-
tialization, and therefore, during initialization it is necessary to take into
account the following environment characteristics: a single-thread execu-
tion, system calls are disallowed, there is no blocking, and there is no
support for exception handling .

OEMInterruptEnable Enables an interrupt with a specified identifier . This function is called from
the InterruptInitialize and InterruptMask functions .

OEMInterruptDisable Disables an interrupt with a specified identifier . This function is called
from the InterruptDisable and InterruptMask functions .

OEMInterruptDone Processes the announcement stating that interrupt processing is done .
This function is called from the InterruptDone function .

OEMInterruptHandler Applies only to the ARM architecture . This is an interrupt-handing
 function that is called with any interrupt on the ARM platform; it returns
a SYSINTR identifier and therefore ISR is not registered in OEMInit on the
ARM platform . The role of this function is to determine a corresponding
source of the interrupt .

OEMInterruptHandlerFIQ Applies only to the ARM architecture . Support for Fast Interrupt Query
has limitations . It is not used in the BSPs included with Windows
Embedded CE .

OEMIdle This function is called only if there are no threads scheduled for execu-
tion . It provides an opportunity to switch the processor into a low energy
consumption mode .

OEMPowerOff Switches the processor to the minimum power usage mode or simply
turns power off .

OEMIoControl This function is called from the KernelIoControl function . It implements the
IOCTL interface of OAL for the operating system kernel . A device manufac-
turer may implement additional IOCTL codes to suit its own needs .

OEMSetRealTime Provides the kernel with an interface to the real-time hardware clock—
setting real time .

OEMGetRealTime Provides the kernel with an interface to the real-time hardware clock—
getting real time .

OEMSetAlarmTime Provides the kernel with an interface to the real-time hardware clock—
setting the Alarm .

 Common Platform Code 129

Table 5–6 shows some of the IOCTL control codes .

TABlE 5–6 IOCTl control codes.

Name Purpose

IOCTL_HAL_GET_DEVICE_INFO Device information .

IOCTL_HAL_GET_UUID Unique device identifier .

IOCTL_HAL_REQUEST_IRQ
IRQ request for a device based on device location (DEVICE_
LOCATION) .

IOCTL_HAL_REQUEST_SYSINTR SYSINTR request through IRQ .

IOCLT_HAL_REBOOT Hot device restart .

IOCTL_HAL_POSTINIT
Called while initializing the operating system before the start of
other processes .

Developers can build the OAL by implementing its functionality directly, or they can utilize
the common platform code (common libraries) . The OAL architecture based on common
libraries is named Production Quality OAL (PQOAL) . It includes all common libraries, imple-
mentation infrastructure, and so on . All BSPs included with Platform Builder have the OAL
implemented in the PQOAL architecture .

Common Platform Code
The Platform directory contains another directory named Common that contains the source
code of function libraries that Microsoft supplies, which are available to developers while
building their own BSP (boot loader, OAL and drivers) . These libraries implement most of the
required functionality that is common for all BSPs . Common libraries do not contain code
that is dependent on a specific platform based on a specific implementation of a micropro-
cessor chip .

The purpose of creating a common code (common libraries) is to provide maximum code re-
usability and thus to reduce labor and time needed to create a BSP . Common code provides
an opportunity to develop a BSP in a modular fashion by using all the necessary components
from the included common libraries .

Common platform code consists of a set of libraries that Microsoft includes in the source
code . These libraries implement the functionality that is common for all BSP devices of
Windows Embedded CE . BSP developers may use these libraries for building or customizing
their own BSPs . These libraries were created in order to reduce the complexity of creating
custom BSPs by reusing existing code . The common code contains functionality implementa-
tion that may be useful while building a boot loader, OAL, and system drivers .

130 Chapter 5 Board Support Package (BSP)

In addition to the libraries, the common code offers an implementation framework for situa-
tions such as when OAL code specific to a given hardware platform is implemented through
return function calls and for providing data structures implemented in a BSP . This framework
greatly simplifies the task of porting BSPs . At the same time, there are no requirements a
developer has to meet as far how and in what form common libraries are be used . The de-
veloper may use only those libraries that are necessary by implementing the rest of the func-
tionality independently or by cloning the implementation of the required common libraries
into a personal BSP directory and making all necessary changes directly in it .

The use of common code enables a developer to substantially reduce the time needed to
build a BSP by using a code that was tested by Microsoft and to create a BSP that has the
same architecture as the BSPs Microsoft includes with the OS development tools .

The common code located in the \PLATFORM\COMMON\SRC\ directory is organized by the
following subdirectories depending on the processor architecture and functionality:

n ARM common code for the ARM processor architecture .

n COMMOn common code that is not dependent on the processor architecture .

n MIPS common code for the Microprocessor without Interlocked Pipeline Stages
(MIPS) processor architecture .

n SHX common code for the SHX processor architecture .

n SOC common code for various system-on-chip (SOC) systems .

n X86 common code for the X86 processor type architecture .

The code located in these directories is built into libraries during the platform build process .
These libraries are located in the \PLATFORM\COMMON\LIB\<PROCESSOR_TYPE>\<BUILD_
TYPE>\ folder, where <PROCESSOR_TYPE> means ARM, MIPS, SHX or X86, and <BUILD_
TYPE> means Retail or Debug . BSPs refer to \PLATFORM\ COMMON\LIB\ directory by using
the _PLATCOMMONLIB variable .

The \PLATFORM\COMMON\SRC\COMMON\ subdirectory contains the code that is not de-
pendent on processor architecture, and it is organized within the subdirectory according to
its functionality:

n BOOT support infrastructure for building a boot loader .

n CACHE used for working with cache and Translation Lookaside Buffer (TLB) .

n CEDDK part of CEDDK .

n ETHDRV network drivers that have debugging function for the boot loader .

n FlASH used for working with CFI NOR Flash .

n IlT part of the Interrupt Latency Timing (ILTiming) implementation, which includes the
utilities for measuring delays during IRQ processing .

n InTR common code for working with interrupts (IRQ mapping into SYSINTR) .

 Common Platform Code 131

n IO general I/O code .

n IOCTl common hardware-independent IOCTL control codes .

n KITl hardware-independent part of KITL implementation .

n lOg outputs debugging information .

n OTHER various stub functions .

n PCI simplified implementation for working with the Peripheral Component
Interconnect (PCI) bus for the boot loader and for initializing the operating system .

n PERREg retains the registry for NOR Flash .

n POWER implements hardware-independent IOCTL codes for managing the power
supply .

n RTC implementation of the Real Time Clock functions .

n TIMER a timer implementation .

The following directories contain the code that is dependent on processor architecture:

n \PLATFORM\COMMON\SRC\ARM\

n \PLATFORM\COMMON\SRC\MIPS\

n \PLATFORM\COMMON\SRC\SHX\

n \PLATFORM\COMMON\SRC\X86\

These directories can contain code in the Common subdirectory that functions for the archi-
tecture of the respective processor, as well as for specific architecture implementations (for
example \MIPS\ MIPS32, \ARM\ARM920T, and \ARM\ARM926) .

The \PLATFORM\COMMON\SRC\SOC\ directory includes subdirectories that contain the
code related to a chip-specific implementation, along with its periphery and related proces-
sor resources . Most of the code related to a processor is located in a corresponding sub-
directory of the \PLATFORM\COMMON\SRC\SOC\ directory . The directory name contains
the SOC name, then the underscore, then the developer’s initials, and then, after another
underscore, the implementation version number, such as X86_MS_V1, OMAP2420_MS_V1,
PXA27X_MS_V1 . Each subdirectory that corresponds to the SOC chip usually contains subdi-
rectories that store implementation of a certain chip–based functionality, such as drivers and
I/O including additional OAL initialization .

It is assumed that implementation of libraries located in the subdirectories is not dependent
on the platform hardware on a corresponding SOC chip . As already mentioned, developers
may use the common platform code in any way they consider suitable . It is necessary, how-
ever, to observe a common rule, and that rule is, you should never directly modify the code
shipped with the Platform Builder . First, clone the necessary part of the library into your own
BSP directory, and then, make changes to the copy of the code .

132 Chapter 5 Board Support Package (BSP)

Kernel Independent Transport layer (KITl)
KITL separates the implementation of a low-level transport interface from the service proto-
col that provides a communication mechanism between a developer’s workstation and the
target device .

Drivers
In addition to the microprocessor, the platform consists of multiple peripheral devices . The
operating system may need drivers in order to use to use these devices . The development
tools include a large number of drivers, both as part of the platform-independent code and
as part of the supplied BSPs . If a shipped driver is not compatible, it is necessary to imple-
ment a custom-built driver as part of the BSP (SRC\DRIVERS) . To expedite the build process,
the most suitable driver shipped with the software is used as a base . Table 5–7 provides a list
of directories that contain the majority of drivers included in Windows Embedded CE .

TABlE 5–7 Included drivers.

Directory Description

\PUBLIC\COMMON\OAK\DRIVERS\ Contains platform-independent drivers such
as bus drivers and the model device driver
(MDD) parts of layered drivers .

\PLATFROM\COMMON\SRC\SOC\ Contains implementation of drivers for the
SOC peripherals .

\PLATFORM\<PLATFORM_NAME>\SRC\DRIVERS Contains implementation of drivers for a
 specific platform and the Platform Dependent
Driver (PDD) part of layered drivers .

The structure of drivers and their types is covered in more detail in the next chapter .

Configuration Files
An operating system is built from batch files, and the build process is controlled by configu-
ration files . Prior chapters provide a more detailed description of the file entry formats and
the purpose of configuration files . Table 5–8 shows a list of BSP configuration files and
describes their purpose .

 Creating a New BSP 133

TABlE 5–8 BSP configuration files and their purpose.

File Description

<PLATFORM_NAME> .BAT The file is located in the BSP directory root . It contains settings for
environment variables related to the BSP build . It is not launched for
execution, and it must not contain any commands except for setting
variables and, possibly, for conditional file filtering during the Sysgen
stage .

CONFIG .BIB The file is located in the Files directory of the BSP . It contains the main
parameters of the ROM/RAM platform, as well as various additional
settings, such as settings for OAL variables, and image builds in vari-
ous formats .

PLATFORM .BIB The file is located in the Files directory of the BSP . It contains a list of
BSP files included in the run-time image of the operating system .

PLATFORM .REG The file is located in the Files directory of the BSP . It contains initial
registry settings for the BSP components, including the drivers .

PLATFORM .DAT The file is located in the Files directory of the BSP . It contains details
about the initialization of the file system into memory required for the
BSP . Usually, the file is empty .

PLATFORM .DB The file is located in the Files directory of the BSP . It contains de-
tails about the initialization of the system base required for the BSP .
Usually, the file is empty .

Creating a new BSP
Creating a new BSP is the most complicated task while building embedded solutions based
on Windows Embedded CE . Usually, you start building a BSP by cloning the most suitable
package that is available in the source code . Then, it is necessary to perform the analysis of
platform differences and to modify the code of the cloned BSP . This modofication may in-
clude customization of drivers or a low-level initialization code . In any event, in order to build
a BSP it is necessary to have the hardware diagram or similar information available .

Quite often, BSPs without included source code have the ability to provide additional plat-
form functionality by building new device drivers that are connected through various inter-
faces . Specialized IOCTL control codes are usually available in this case for obtaining IRQ and
SYSINTR, while the platform supports installable interrupt service routines (IISR) .

 135

Chapter 6

Driver Architecture
A driver is software that provides the operating system (OS) with an interface to a physical or
a virtual device . The operating system expects drivers to implement a predefined interface
that creates an abstraction of a specific hardware or a virtual implementation of a device . In
Microsoft Windows Embedded CE 6 .0, this interface represents a set of functions and input/
output control codes (IOCTL) that must be implemented in the driver’s code in most cases .
The driver infrastructure makes it possible for a designated part of the operating system to
provide parts of the operating system and the application software with a unified interface
with the system hardware regardless of its implementation .

In order to understand the various drivers that come with Windows Embedded CE, it is
 necessary to classify them . Depending on the perspective, such as architecture, loading into
memory, loaded modules, system load time, and supported device type, the same driver can
be classified in different ways . For example, a layered, kernel-mode driver that the Device
Manager (device .dll) loads during the system startup provides support for a serial port . Let us
formalize our classification:

n Implementation architecture .

o Layered driver, which consists of the model device driver (MDD) and the platform
 dependent driver (PDD) .

o Hybrid driver .

o Monolithic driver .

n Loading module .

o Device Manager (device .dll)— stream drivers .

o GWES (gwes .dll)—drivers that are used only by the Graphics, Windowing, and
Events Subsystem (GWES) .

o File system (filesys .dll)—drivers of file systems .

n Loading into memory .

o Into kernel memory—kernel-mode drivers .

o Into a specialized user process (Udevice .exe)—user-mode drivers .

n System load time .

o When starting the system .

o By request .

136 Chapter 6 Driver Architecture

n Type of supported device .

o Serial port .

o Video adapter .

o Network card .

o Touchscreen .

o Keyboard .

o Mouse .

o Human interface device (HID), and so on .

Driver Implementation Architecture
Several different types of driver implementation architecture are available . The most com-
mon architecture type in Windows Embedded CE is a layered driver often called an MDD/
PDD driver . In this architecture, a driver is built from two parts, the MDD library and the PDD
library .

The MDD library implements a functionality that is common for a certain class of device
 drivers by providing the operating system with a required interface—usually, as a defined set
of IOCTL control codes and, possibly, functions . This interface is usually called Device Driver
Interface (DDI) . The MDD layer also implements an interrupt service thread (IST) and defines
the interface for interacting with the PDD layer, which is called Device Driver Service Interface
(DDSI) . A service interface depends on the driver type and the MDD library implementation .

The PDD library contains a code that works with a specific hardware device implementation
by providing the MDD layer with a pre-defined set of functions (DDSI) .

Operating System

Device

PDD

MDD

DDI

DDI

DDSI

DDSI

FIguRE 6–1 Layered driver architecture

 Driver Implementation Architecture 137

A two-level model simplifies the development and the process of porting the drivers . All a
developer has to do is implement the PDD layer and use the common MDD layer implemen-
tation . For each device type that supports this layered architecture, Windows Embedded CE
includes an MDD implementation as part of a completely implemented driver . Figure 6–1
illustrates the layered architecture .

The use of a two-level MDD/PDD model implies MDD persistence, where the same MDD is
used for all PDDs . When it is necessary to provide the operating system with some unique
device functionality that is a logical extension of the MDD/PDD implementation for a
given device type, it is possible to clone MDD implementation and to expand the interface
 between MDD and PDD (DDSI), as well as the interface offered by the MDD layer to the
 operating system . This hybrid type of driver architecture is shown in Figure 6-2 .

Operating System

Device

Expanded PDD

Expanded MDD

DDI

DDI

Additional Functions

Additional Functions

DDSI Additional Functions

DDSI Additional Functions

FIguRE 6–2 Hybrid driver architecture

The next available type of driver architecture is the monolithic architecture, which has no
 intermediate interface . A monolithic driver implements the interface with the operating sys-
tem (e .g . DDI) and interacts directly with a specific hardware implementation . This type of
 architecture is usually utilized in the following cases:

n When there is no layered model for a device type .

n Device hardware implements some functionality as the one implemented in the MDD
layer .

n It is necessary to provide access to a unique device functionality that does not fit into
the architecture of the existing implementation of the MDD layer .

n When using an MDD/PDD model, it is not possible to achieve a required efficiency level .

Building a monolithic driver is the most complex task; however, using this implementation
architecture makes it possible to obtain high efficiency and to maximize the hardware use .
Figure 6–3 illustrates a monolithic architecture .

138 Chapter 6 Driver Architecture

Operating System

Device

DDI

DDI

Monolithic Driver

FIguRE 6–3 Monolithic driver architecture

Regardless of the selected implementation architecture, a developer may use as a base the
source code included with the development tools . Table 6–1 lists the directories that contain
the majority of drivers included with Windows Embedded CE .

TABlE 6–1 Included driver directories.

Directory Description

\PUBLIC\COMMON\OAK\DRIVERS\ Contains platform-independent drivers,
which are usually bus drivers and the MDD
parts of layered drivers .

\PLATFROM\COMMON\SRC\SOC\ Contains driver implementation for the sys-
tem-on-chip (SOC) periphery .

\PLATFORM\<PLATFORM_NAME>\SRC\DRIVERS Contains implementation of drivers for a
specific platform and the PDD part of layered
drivers .

File System Drivers, Thread Drivers, and native Drivers
As mentioned earlier, in Windows Embedded CE the following three modules (parts of the
kernel) can load drivers:

n Device .dll .

n Gwes .dll .

n FileSys .dll .

The Device Manager (Device .dll) loads the drivers that implement a stream interface . A
stream interface is a predetermined set of functions that a driver is supposed to provide to
the Device Manager . No restrictions exist in terms of the device types where a stream driver
can be implemented . The majority of Windows Embedded CE drivers support a stream inter-

 File System Drivers, Thread Drivers, and Native Drivers 139

face . Table 6–2 lists stream interface functions with their descriptions (the XXX-prefix that is
defined by the developer may not be present) .

TABlE 6–2 Stream interface functions.

Function Description

XXX_Init
The Device Manager calls this function while loading the driver . It
performs all required initialization .

XXX_PreDeinit The Device Manager calls this function before calling XXX_Deinit . It
marks an instance of the device as invalid and performs all necessary
actions to prevent resource contention in a multi-threaded imple-
mentation .

XXX_Deinit The Device Manager calls this function before the driver is offload-
ed . It performs a necessary procedure of freeing the resources .

XXX_Open This function is called while calling CreateFile with a device name . It
creates a handle for Read/Write/IOControl .

XXX_PreClose The Device Manager calls this function before calling XXX_Close . It
marks the device handle as invalid and performs all necessary ac-
tions to prevent resource contention in a multi-thread implementa-
tion .

XXX_Close This function is called when calling CloseHandle with a device han-
dle . It clears the context .

XXX_IOControl This function is called when calling DeviceIoControl . In many driver
types, this is where most of the driver functionality resides .

XXX_Read This function is called when calling ReadFile . It performs a Read op-
eration . Frequently, it is not implemented .

XXX_Write
This function is called when WriteFile . It performs a Write operation .
It is not implemented frequently .

XXX_Seek
This function is called when SetFilePointer . It performs a Move op-
eration . Frequently, it is not implemented .

XXX_PowerUp The power management system calls this function when the system
returns from Suspend mode . It performs the actions that are neces-
sary to return the system from the Suspend state .

XXX_PowerDown The power management system calls this function when the system
goes into Suspend mode . It performs the actions that are necessary
to enter a Suspend mode .

Stream drivers are unique in a sense that they can be named and are accessible through
functions that interact with the file system . Calling CreateFile with a device name returns a
handle that makes it possible to access a driver by using both a standard file API (ReadFile/
WriteFile/SetFilePointer) and the so-called worker bee of thread drivers—DeviceIoControl .

The Device Manager registers the following three different file namespaces in the file system
for accessing named stream drivers:

140 Chapter 6 Driver Architecture

n Legacy (DEV1:) .

n Device–based (\$device\DEV1) .

n Bus–based (\$bus\PCI_0_1_0) .

The file system recognizes device calls and reroutes to the Device Manager .

The legacy namespace is used first in CE . A device name is built from the device prefix and its
index . The prefix and the index are taken from the registry and the driver-load parameters .
An index value can be between zero and nine . Therefore, only 10 devices with the same
name or device prefix can be accessible through a legacy namespace .

A device namespace ($device) is similar to a legacy space but the former has no index restric-
tion . A device name is built by adding a device prefix and its index, separated by a back slash
(\), to the $device space identifier, preceded by a back slash . A device namespace makes it
possible to call more than 10 devices with the same index .

The bus namespace ($bus) provides additional possibilities for working with bus–based de-
vice drivers . It is implemented by both the Device Manager and the driver . A device name is
built by adding a bus name to the $bus namespace identifier and preceded by a back slash
(\), underscore bus number, underscore device number, and underscore function number .
The handle that is returned by making a call via a bus name has additional characteristics
as opposed to the handles that are obtained by making a call via a legacy space or a driver
space, which makes it possible to perform bus architecture-specific operations .

A stream driver does not necessarily have to support a named interface . If a driver does not
have to interact with other drivers or applications, then it may not implement the functions
that are responsible for the access to a named interface— XXX_Open/XXX_Close .

Figure 6-4 illustrates a stream driver architecture .

The GWES (GWES .dll) module loads the device drivers that are exclusively used by this
 system, which are all the following drivers related in any way to the user interface: keyboard,
video adapter, touch screen, printer, and mouse . These types of drivers are sometimes named
 native drivers, where each class of devices whose drivers are loaded by GWES has its own
 interface with GWES .

The file system (FileSys .dll) module loads the file system drivers . File system drivers are imple-
mented as a DLL that implements a predefined set of functions and IOCTL control codes .
These functions are called by using a standard set of file system application programming
interfaces (APIs) through the files that the file system driver registered .

 User-Mode Drivers and Kernel-Mode Drivers 141

Application or Driver
or Bus Driver

File System

Device Manager

Stream Interface Driver

Kernel

OAL

Hardware

Access kernel functions

Interrupt Service Routines

Returns SYSINTR

Interrupt Service Handler
Sets Interrupt Events

Loads/Unloads a Driver
Provides Access from Other System Parts

Install IISR
Call InterruptDone()

Access a Driver Functionality
CreateFile()/ReadFile()/WriteFile()/SetFilePointer()/

DeviceIoControl()

Requests to Load/Unload a Driver

ActivateDeviceEx()
DeactivateDevice()

Registers Device Namespaces

Legacy/Device/Bus

FIguRE 6–4 Stream driver architecture

user-Mode Drivers and Kernel-Mode Drivers
In Windows Embedded CE, drivers can be loaded into either the kernel space (kernel-mode
drivers), or into a specialized user-mode drivers host process—Udevice .exe (user-mode
drivers) . The drivers loaded by the GWES and FileSys subsystems can only be kernel-mode
drivers . The drivers loaded by the Device Manager (Device .dll) can be both kernel-mode
drivers and user-mode drivers . By default, unless a special flag is set in the registry settings
(DEVFLAGS_LOAD_AS_USERPROC(0x10)), a driver is loaded into the kernel space .

142 Chapter 6 Driver Architecture

As mentioned earlier, drivers provide interfaces to a physical or virtual device . The quality,
stability, and security of drivers determine the quality, stability, and security of the entire sys-
tem . Regardless of a driver’s type, it should be robust . A system with only one compromised
kernel-level driver becomes fully compromised because a kernel-level driver has full access to
user memory, as well as full access to kernel memory . A developer should consider all inputs
to driver functions as originating from non-trusted sources . All input should be checked and
handled carefully . User-mode drivers do not have full access to kernel and user memory, but
through the reflector service discussed below, they have access to kernel memory for opera-
tions . A system can be compromised through a low-quality driver, and therefore, all the rules
mentioned above are also applicable to user-mode drivers . In addition, the user-mode driver
infrastructure provides the possibility to limit access to kernel memory by using registry set-
tings . Developers should keep in mind that access from a user-mode driver to the kernel
must be restricted as much as possible .

Kernel-mode drivers have a certain advantage compared to the user-mode drivers in terms
of their efficiency, accessibility of internal kernel structures, and API . Kernel-mode drivers
can have direct, synchronous access to user buffers because they have direct access to user
memory . When loading a driver into the kernel, keep in mind the stability and security
requirements discussed earlier . A driver error may result in a kernel error, which results in
system failure . In order to reload a driver, it may be necessary to restart the device .

Kernel-mode drivers cannot display the user interface directly . To show the user interface,
kernel drivers use an additional kernel capability—support for the UI Proxy device driver . In
order to enable this capability in the OS image, it is necessary to add the UI Proxy for kernel-
mode drivers (SYSGEN_UIPROXY) component into an OS design . To display the user interface,
a kernel-mode driver calls the CeCallUserProc function and passes, as a parameter, the library
name that implements the user interface . The internal details of how the kernel-mode driver
displays the user interface are as follows:

 1. The specified proxy device driver of the user interface is loaded into the Udevice .exe
host process .

 2. A function specified in the CeCallUserProc function is called, and the specified param-
eters are passed to this function .

 3. The function performs the necessary actions .

 4. The result is transformed accordingly and is returned into the kernel-mode driver (out-
put parameters of the CeCallUserProc function) .

It is important to point out that the user interface proxy driver is loaded with the first call .

Registry settings determine the drivers that are loaded into the Udevice .exe process .
Microsoft attempted to make the kernel-mode drivers and user-mode drivers as compatible
as possible . However, loading the drivers into a user process imposes the following certain
restrictions upon the driver:

 User-Mode Drivers and Kernel-Mode Drivers 143

n Kernel structure and kernel memory are not accessible .

n A large part of the kernel API is not available .

n The use of the available part of the kernel API is restricted by registry settings .

n Limited access to user buffers .

Therefore, a universal driver that must have the ability to load into both the user space and
the kernel space must be implemented while taking into account the limitations of user-
mode drivers .

The use of user-mode drivers can improve the system stability, security, and fault-tolerance .
User-mode drivers can be separated from other user-mode drivers by being loaded into dif-
ferent Udevice .exe host processes and by being isolated from the kernel . These drivers have
far fewer privileges than the kernel-mode drivers . If a user-mode driver fails, it may be possi-
ble to reload it without having to reload the entire system . However, developers should keep
in mind the security and stability considerations mentioned earlier . Developing user-mode
drivers does not mean that developers can omit security and stability requirements .

Keep in mind that in general kernel-mode drivers are more efficient than user-mode drivers .
Moreover, not all types of drivers can be user-mode drivers . All file system drivers, all native
(GWES) drivers, and all network drivers can be only kernel-mode drivers .

The support infrastructure for user-mode drivers is called the User-mode Driver Framework .
The central part of this framework is the reflector service . This service provides the user-
mode drivers with the ability to work in user mode . For each user-mode driver, a reflector
service object is created and is responsible for the following functionality:

n It loads and controls the host process .

n It reroutes calls to the driver over to the host process from the operating system .

n It transforms pointer parameters (first-level pointers) of the calling process to the driver
address space .

n It provides the user-mode driver with access to some kernel-mode services .

The reflector service object masks the differences between user-mode drivers and kernel-
mode drivers from the rest of the system . When utilizing a functionality of a specific driver,
an application or another driver does not differentiate between a user-mode driver and a
kernel-mode driver . The reflector service object provides a user-mode driver with access to
a part of the kernel-level API, including: CreateStaticMapping(); NKDeleteStaticMapping();
VirtualCopy(); FreeIntChainHandler(); InterruptInitialize(); InterruptDisable(); InterruptDone();
InterruptMask(); and LoadIntChainHandler() . At the same time, the reflector service validates
input parameters before performing the requested actions in accordance with the registry
settings in the driver branch, where IoBase represents the physical address/addresses and
IoLen represents the length/lengths . In the case of one contiguous fragment, IoBase and

144 Chapter 6 Driver Architecture

IoLen are created as a DWORD type . If access is needed to several non-contiguous fragments
of physical memory, IoBase and IoLen are created as a multi_sz type, which stores addresses
and lengths .

As mentioned earlier, user-mode drivers can be separated from one another by being
loaded into different host processes . In order to accomplish that, a special registry key of
the following kind needs to be created: HKEY_ LOCAL_MACHINE\Drivers\ProcGroup_XXXX,
where XXXX is the driver group number . The registry key must have the following values:

n Procname requires Udevice .exe for the user-mode drivers .

n ProcVolPrefix is a prefix that is registered as a volume, such as $udevice, for ac-
cessing the drivers via the functions of the file system and DeviceIoControl, such as
\$udevice\DEV1 .

Furthermore, the ProcGroup type DWORD value needs to be set to the group number of the
user-mode driver registry key . Drivers with different group numbers will be loaded into dif-
ferent host processes, while drivers with the same group number will be loaded into one host
process .

Note that the Device Manager is responsible for loading user-mode drivers, so all user-mode
drivers are stream drivers .

The user-mode driver is loaded as follows:

n The Device Manager receives a request to load the driver .

n The Device Manager validates that this is a user-mode driver .

n The Device Manager creates a reflector service object .

o The reflector service object loads the host process for user drivers (udevice .exe)
by passing it the volume name specified in registry settings as a parameter .

n The host process for user drivers creates and mounts the specified volume and registers
the file system API set .

o The request is returned to the reflector service .

n The request is returned to the Device Manager .

n The Device Manager calls XXX_Init .

o The reflector service redirects the request to the host process for user-mode
drivers .

n The host process processes the request .

n The host process loads the appropriate driver .

n The host process calls the XXX_Init function of the driver .

 User-Mode Drivers and Kernel-Mode Drivers 145

n The driver returns the device context .

o The device context is returned to reflector service .

o The device context is returned to the Device Manager .

n The Device Manager creates a handle and returns it to the initiator that loaded the de-
vice driver .

n The driver is loaded and is accessible through a standard file system API set and
DevoceIoControl .

Figure 6-5 illustrates a user-mode driver loading process .

Application or Driver
or Bus Driver

User-mode Driver Host Process

Reflector Service Object

File System

Device Manager

User Space

Kernel Space

Driver or Bus Driver

8. Load Requested Driver
9. Call XXX_Init

Stream Interface Driver

12. Return
the Device Handler10. Return

the Device Context

7. Forward
XXX_Init Call

4. Return Call

2. Create a Reflector
Service Object

11. Return the
Device Context

6. Call XXX_Init

5. Return Call

ActivateDeviceEx()

1. Requests to
Load a Driver

12. Return
the Device Handler

3. Create and
Mount Volume
and Register

File System API

1. Requests to
Load a Driver

ActivateDeviceEx()

2. Create a User-
Mode Driver
Host Process

FIguRE 6-5 A user-mode driver loading process

The fixup of the modules located in the MODULES section of binary image builder (.bib) files
occurs during the Makeimg stage . Therefore, it is necessary to specify the memory region for
address fixup . If a driver is loaded into the kernel address space, then the module needs have

146 Chapter 6 Driver Architecture

the K flag set in the .bib file . If a driver is loaded into the user process, then the K flag does
not need to be set . If a load is necessary, both the user space and the kernel space need to
have the Q flag set . The drivers located in the FILES section of .bib files can be loaded both
into the user space and the kernel space . The address fixup occurs while driver is loaded into
memory for execution .

loading the Drivers
There are three modules that are responsible for loading the drivers: Device Manager
(Device .dll), GWES (Gwes .dll), and file system (Filesys .dll) . Regardless of the module respon-
sible for loading the drivers, all settings are stored in the registry of the operating system .

The Device Manager is responsible for loading stream drivers . Stream drivers can be loaded
by calling a special function named ActivateDeviceEx() that uses a handle of a registry key
that contains driver settings as values, or it is done automatically at the system startup .

Table 6–3 provides some of the registry settings that the Device Manager uses for loading
stream drivers . Those settings should be placed as values of any appropriate registry key
which will be used for a ActivateDeviceEx() call . To specify drivers for automatically loading at
the system startup the special keys in registry are used wich will be discussed below .

TABlE 6–3 Registry settings for loading stream drivers.

Value name Description

Dll Required . Specifies the driver file name .

Prefix Optional . Defines the prefix of the stream driver and part of the device name for
accessing through the file system . It must match the prefix that is used for imple-
menting driver functions if the 0x0008 flag is not set . This flag means that driver
functions were implemented without a prefix (Init, Deinit, Write, and so on) .

Order Optional . It determines the load order of the drivers . It enables you to implement
scenarios with drivers being dependent on the load order during the automatic
load at system startup . The drivers are loaded in the order specified by this
parameter . If the parameter is missing, the drivers will be loaded after with this
parameter—usually, according to the registry’s numeric order .

Index Optional . It is part of the device name for accessing through the file system . It is
added to the prefix on the right . If the setting is missing, the Device Manager will
automatically use the next sequential value for the devices with one prefix .

IClass Optional . It specifies a class or classes of the device . It is used in the PnP messag-
ing system . Examples: loading a block driver, pointing to the power management
system that the driver support power management, etc .

Flags Optional . It specifies how the driver will be loaded .

Table 6–4 provides some of the values for setting the Flags value .

 Loading the Drivers 147

TABlE 6–4 Values for setting the Flags value.

Value Description

0x00000000 No flags .

0x00000001
The driver is unloaded after the XXX_Init function is called or after the function
return .

0x00000002 Driver is loaded by using LoadLibrary instead of LoadDriver .

0x00000004 Driver is not loaded .

0x00000008 Driver is implemented without by using a prefix in the function names (Init,
Deinit, Write, etc .) .

0x00000010 Loads the driver in user-mode .

0x00000100 Driver is loaded only when there is an exclusive access to IRQ .

0x00001000 Driver is loaded during boot phase one .

0x00010000 Access to the driver is possible only from a privileged application .

There is also a certain set of registry settings, which are accessed through auxiliary func-
tions DDKReg_GetIsrInfo() and DDKReg_GetWindowInfo(), and which are actively used while
implementing the drivers supplied with the operating system . Bus drivers can configure these
settings, or they can be set manually . Table 6–5 lists the main settings .

TABlE 6–5 Registry settings for driver implementation.

Value Name Description

Irq Physical IRQ request that the device uses .

Sysintr System identifier of the interrupt .

IsrDll Points to the library of the installable ISR .

IsrHandler Points to the routine function name in the installable ISR .

BusNumber Number of the bus if the system had more than one bus of the same type .

InterfaceType The bus type used by the device .

IoBase A relative address of the I/O window/windows .

IoLen Length/lengths of the I/O window/windows .

MemBase Relative address of the memory window/windows .

MemLen Length/lengths of the memory window/windows .

Let us now look at the automatic loading of stream drivers at the system startup . When the
system is started, the Device Manager loads and reads the RootKey value of the registry key
HKEY_LOCAL_MACHINE\Drivers . Next, the Device Manager calls ActivateDeviceEx with the

148 Chapter 6 Driver Architecture

HKEY_LOCAL_MACHINE\<RootKey> key where <RootKey> is the RootKey value . By default,
this value is equal to \Drivers\BuiltIn .

The HKEY_LOCAL_MACHINE\<RootKey> key contains the settings for bus enumerator
(BusEnum .dll) . The bus enumerator driver reads all subkeys of the registry key where it is lo-
cated, and for each key it calls the ActivateDeviceEx() function . The sequence of calling the
ActivateDeviceEx() function for the drivers is determined by the Order value . Drivers with a
lower Order value are loaded first . Drivers without the Order settings are loaded after the
drivers that have the Order settings—usually, according to the registry’s numerical sequence .

Therefore, in order to load a stream driver, at system startup it is necessary to place the reg-
istry key with its settings as a subkey of HKEY_LOCAL_MACHINE\<RootKey> registry . By de-
fault, it is located in HKEY_ LOCAL_MACHINE\ Drivers\BuiltIn .

The GWES (Gwes .dll) loads the keyboard, video adapter, touchscreen, printer, and mouse
drivers . The loading of each driver type is determined by its unique registry settings . Let us
take a closer look at the load process for some of the native drivers .

The following algorithm is used during the load of the video adapter driver .

At first, GWES looks through a list of values stored in the HKEY_LOCAL_MACHINE\System\
GDI\DisplayCandidates key with the names that contain CandidateX where X is a sequential
number of a candidate for a video adapter driver; the X value can range from 1 to 32 . These
values contain a line of code data which points to a registry key in relation to HKEY_LOCAL_
MACHINE . GWES browses through the values sequentially until it finds the key that is present
in the system . Next, GWES attempts to load the video adapter driver that is specified in the
DisplayDll value of the found registry key . The process of browsing registry key values ends .

If the HKEY_LOCAL_MACHINE\System\GDI\DisplayCandidates key is missing or if there are no
registry keys specified in the CandidateX values, GWES loads the driver specified in the value
with the name Display from the HKEY_LOCAL_MACHINE\System\GDI\Drivers key . This value
must contain the name of the library of the video adapter driver . If the key is missing, GWES
will attempt to load the driver with a default file name which is ddi .dll .

Windows Embedded CE supports dual monitors, but the second video adapter driver is
not loaded automatically . In order to load the driver of the secondary display, it is neces-
sary to call CreateDC directly by specifying the driver’s name and by using the obtained
handle for drawing from that point forward, as follows: HDC hSecondaryDisplay =
CreateDC(<Driver_File_Name>, NULL, NULL, NULL).

Note that on the secondary display the developer is responsible for rendering the entire dis-
play because Windows manager cannot access it .

The PS/2 keyboard driver is loaded by GWES at system startup . The GWES module reads
the value that contains the name Status in the HKEY_LOCAL_MACHINE\HARDWARE\

 Driver Development 149

DEVICEMAP\KEYBD key and determines if the keyboard is present and its characteristics . If
it does not find it, by default it assumes that the keyboard is present and that it contains the
ENTER and ESC keys, as well as alpha-numeric keys and further looks for a value with the
name DriverName . It has to contain the name of the keyboard driver . By default, the key-
board driver also contains the mouse drivers,so no separate settings for loading the mouse
driver are needed . The HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\MOUSE settings
can be used by the mouse driver or other parts of the system, but GWES does not use them
for a separate load of the mouse driver .

In order to load a touch screen driver, GWES validates the presence of a value with the name
DriverName in the HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH registry key
and loads the specified library .

The FileSys module loads the file system drivers . File system drivers can be loaded in two
different ways . The first method is the automatic load during the system startup, which is
typically used for the file systems that do not have a corresponding block driver (HKEY_
LOCAL_MACHINE\System\StorageManager\Autoload\<File_System_Name> key) . The second
method is to load during the process of mounting media while a corresponding block driver
is being loaded . While loading a block driver, the driver sends a request to mount a media
device . The Storage Manager receives this call and requests information about the device
profile . After that, it loads a matching driver for that partition . Next, the Storage Manager
enumerates the partitions and loads file system drivers based on the partition type .

You can specify file system settings for any mounted media with a given file system .
They must be present as values in the registry key HKEY_LOCAL_ MACHINE\System\
StorageManager\<File_System_Name>, where <File_System_Name> is FATFS, UDFS, etc . The
registry key settings are HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\<Device_
Profile_Name>\<File_System_Name>, where \<Device_Profile_Name> is CDProfile, HDProfile,
PCMCIA, SDMMC, etc . override the file system settings stored in the HKEY_LOCAL_
MACHINE\System\StorageManager\<File_System_Name> key .

Driver Development
A choice of the driver implementation method depends heavily on the device type and addi-
tional requirements . For example, a majority of debugging drivers for network cards shipped
with the development tools work in poll mode, which is often unacceptable for a regular
network driver .

Let us look at a driver implementation that utilizes interrupts . In Windows Embedded CE, the
processing of interrupts is divided into two parts: interrupt service routine (ISR) and interrupt
service thread (IST) . ISR routines are part of the OAL layer . Otherwise, if support is included
in the OAL layer, they can be installed during execution (installable ISR routines—IISR) . The
main tasks of the ISR routine are to determine the source of the interrupt, mask the inter-

150 Chapter 6 Driver Architecture

rupt, and return the logical system interrupt (SYSINTR) identifier to the system . IST is a worker
bee that performs the majority of interrupt processing . It creates an event, registers it in the
kernel for a certain logical interrupt, and waits for the event . When the event is created, it
performs all the necessary processing based on the event . If a driver uses an installable ISR,
then IST loads the installable routine . If a driver has a multi-threaded implementation, then
the process of creating and installing an ISR can be executed in one thread, such as the main
thread while another thread can wait and process a different event . Driver tasks include the
following:

n Determine a system identifier of the interrupt .

o Can be specified directly in the driver .

o Can be obtained from registry settings by using the DDKReg_GetIsrInfo()
function .

o Can be obtained by sending the request to the OAL layer by using IRQ
– IOCTL_HAL_REQUEST_SYSINTR .

n Create an event (CreateEvent()) .

n Register the event in the kernel for a specified system identifier of the interrupt
(InterruptInitialize()) .

n Wait for an event by using WaitForSingleObject() .

n Once the event has been created, process it appropriately .

n After the processing is finished, call InterruptDone() .

If a driver uses an installable ISR routine, then it additionally performs the following tasks:

n Determines the settings for the ISR routine (name, entry point, and other parameters) .

o Can be directly specified in the driver .

o Can be obtained from registry settings by using the DDKReg_GetIsrInfo()
function .

n Loads an installed IISR procedure for a specific IRQ request (LoadIntChainHandler()) .

n Configures the IISR procedure (KernelLibIoControl()) .

n After finishing, it calls the FreeintChainHandler() function, which excludes the installed
IISR procedure from a chain of installed procedures that are called in the OAL layer
while processing a specified interrupt request (IRQ) . It keeps the library code loaded in
memory .

The installable ISR routine is implemented as a dynamically loaded library . This library must
meet the following requirements:

n The entire implementation code must be inside the library; no explicit dependencies
should exist .

 Driver Development 151

n No implicit dependencies can exist (NOMUPS16CODE = 1) .

n The C run-time library cannot be used (NOLIBC = 1) .

The development tools are shipped with generic installable service routine (GIISR), which is
an installed procedure for processing common interrupts . It is supplied in the source code (\
Public\Common\Oak\Drivers\GIISR\), is applicable for a majority of situations, and reads the
registers/ports in order to determine the status of an interrupt . The GIISR procedure can be
configured with KernelLibIoControl by setting the following:

n Register address/port address .

n Register size/port size .

n A feature, memory, or input/output (I/O) register or port .

n A mask .

Working with buffers that are passed from the calling code to drivers is an important part of
driver development . Before we start discussing this subject let us provide a few definitions, as
shown in Table 6–6, that will be used later on .

TABlE 6–6 Definitions for working with buffers.

Term Definition

Access Checking Checks to make sure that the caller process has enough privileges to access
the buffer .

Pointer Parameter A pointer that is passed to an API function as a parameter .

Embedded Pointer A pointer that is passed to an API function inside a data structure or a buffer .

Secure copy A local copy of the buffer data that has been passed .

Marshaling
or
mapping

Usually applies to pointers . Prepares a pointer to be used in another process .

Synchronous Access Provides access to the buffer during the API call in the caller thread .

When applications need to call some functionality implemented by drivers, usually they need
to pass some information to drivers . It is possible for drivers to use shared memory space
to pass parameters, such as by using shared heaps or memory mapped files . In most cases,
driver functionality is accessable through API calls by using parameters .

This accesibility scenario results in two issues . First, parameters use memory in the user mem-
ory process space, while drivers reside in the kernel memory space (for kernel-mode driv-
ers) or in another user process (for user-mode drivers) . Second, the caller must have enough
rights to access the passed buffer . Therefore, during driver development, you must check ac-
cess to passed buffers and provide drivers with access to the caller’s buffer data . Figure 6–6
illustrate a sample marshaling case .

152 Chapter 6 Driver Architecture

Kernel Memory Space

Driver.dll

App.exe

0101010010101

User Memory Space

Embedded Pointer

Pointer Parameter

FIguRE 6–6 A sample marshaling case

In this case, App .exe calls a Driver .dll function with two parameters . The first is a pointer pa-
rameter, and the second is a structure with an embedded pointer . If the Driver .dll function is
called synchronously (from the caller’s thread), the App .exe memory space can be accessed
directly from the Driver .dll functions during the call . Only synchronous, direct access requires
an access check and not marshaling .

There are two options if asynchronous access to the buffers is required: The first is to make
a copy of the buffer into the driver memory, and the second is to create an alias to the same
physical memory as the buffer that is being passed .

As mentioned earlier, there are several types of marshaling:

n Direct access .

o The calling process buffer is directly accessible for the lifetime of the call .

o It is possible only with a synchronous access for the kernel-mode drivers .

n Copying .

o The buffer being passed is copied to the working buffer of the driver .

o A driver is working with a copy . If needed, it is copied back .

n The use of an alias .

o Creating a new buffer in the driver that is associated with the same physical
memory as the buffer that is being passed .

o All buffer changes are automatically accessible in the calling process .

 Driver Development 153

The kernel is independently able to determine the best marshaling method . Depending on
whether there is synchronous or asynchronous access to the buffer, a different API set needs
to be used for marshaling .

With synchronous access, the kernel automatically converts pointer parameters, and
therefore, the developer has to manually map the embedded pointers by calling
CeOpenCallerBufer(), which validates access and performs marshaling and at the end calls
CeCloseCallerBuffer() .

With asynchronous access, the conversion procedure that occurs with synchronous access
needs to be supplemented with a preparation of all pointers for asynchronous access by
calling the CeAllocAsynchronousBuffer() function, and at the end, calling the
CeFreeAsynchronousBuffer() function .

Data marshaling has the following restrictions for user-mode drivers:

n With asynchronous access, the pointer parameter is accessible in Read-Only mode;
there is no support for Write mode .

n Despite the capability to perform manual marshaling of built-in pointers, when calling
from the kernel to a driver, it is possible to receive pointers that are not accessible from
the user-mode drivers .

Thus, it is most efficient to use a flat buffer containing all the data for the user-mode drivers
and to not use asynchronous access .

Table 6–7 provides summary information about the system API that should be used for
checking access and marshaling a caller’s buffers .

TABlE 6–7 Buffer marshaling API.

Marshaling Pointer Parameter Embedded Pointer

Synchronous Access No need for additional API calls
CeOpenCallerBufer()

CeCloseCallerBuffer()

Asyncronous Access

CeAllocAsynchronousBuffer()

CeFreeAsynchronousBuffer()

CeOpenCallerBufer()

CeAllocAsynchronousBuffer()

CeFreeAsynchronousBuffer()

CeCloseCallerBuffer()

The process of passing data to a driver results in additional risks associated with a possibil-
ity of modifying the pointers and/or data to which they point during an API execution after
being validated by the driver . To prevent these types of attacks, a safe copy method is used
which, involves creating a separate copy of the data stored by the driver . When a safe copy

154 Chapter 6 Driver Architecture

is created, the buffer that is being passed is copied into a local buffer of the driver . It is
 desirable to use it in the following cases:

n For all embedded pointers .

n For all parameters that need to be validated before being used .

Notice that the use of a safe copy reduces efficiency to a certain degree . You can create a
safe copy through several ways:

n Manually .

n By using CeOpenCallerBuffer() with the ForceDuplicate parameter set as TRUE for em-
bedded pointers .

n By using CeAllocDuplicateBuffer() for pointer parameters .

Table 6–8 shows the available marshaling API functions .

TABlE 6–8 API for marshaling.

Function Description

CeOpenCallerBuffer Validates access and performs marshaling of the pointer . Returns a
marshaled pointer . Allocates resources . In order to free resources
after the pointer processing is finished, the CeCloseCallerBuffer
function must be called .

CeCloseCallerBuffer Frees up all resources allocated by the CeOpenCallerBuffer function .
If necessary, writes back to the buffer that was passed .

CeAllocAsynchronousBuffer Prepares a buffer that was previously marshaled by the
CeOpenCallerBuffer function or automatically by the system, for an
asynchronous access . This function must be called synchronously
before the return to the calling thread . It allocates resources . In
order to free resources after the pointer processing is finished; the
CeFreeAsynchronousBuffer function must be called .

CeFreeAsynchronousBuffer Frees up resources allocated by the CeAllocAsynchronousBuffer
function . If necessary, writes back to the buffer that was passed .

CeFlushAsynchronousBuffer Makes changes in the source buffer in accordance with the changes
in the buffer that was changed by the CeAllocAsynchronousBuffer
function .

CeAllocDuplicateBuffer Creates a secure copy of the parameter-pointers .

CeFreeDuplicateBuffer Frees up resources allocated by the CeAllocDuplicateBuffer function .
If necessary, writes back to the buffer that was passed .

Aside from that, Windows Embedded CE 6 .0 includes a set of supplemental C++ classes for
marshaling (\PUBLIC\COMMON\OAK\INC\MARSHAL .HPP) . Table 6–9 provides a listing of
classes and their descriptions .

 Driver Development 155

TABlE 6–9 Additional marshaling classes.

Class Description

AsynchronousBuffer_t Wrapper class for the CeAllocAsynchronousBuffer and
CeFreeAsynchronousBuffer functions . Used for marshaled pointers that
require an asynchronous access .

DuplicatedBuffer_t Wrapper class for the CeAllocDuplicateBuffer and
CeFreeDuplicateBuffer functions . Used for pointer parameters .

MarshalledBuffer_t Wrapper class for the CeOpenCallerBuffer, CeCloseCallerBuffer,
CeAllocAsynchronousBuffer, and CeFreeAsynchronousBuffer functions .
Used for non-marshaled embedded pointers .

Speaking of the development of reliable and stable drivers, keep in mind that it is necessary
to insert __try/__except/__finally blocks into the executable code that can cause an exception
error, especially for the code that accesses data received from outside .

Debugging is a big part of driver development . Windows Embedded CE development tools
provide all needed functionality to debug drivers . Windows Embedded CE provides two pos-
sibilities for debugging drivers: the first is standard step-by-step debugging with the pos-
sibility to enter kernel-supplied code, and the second is debugging without interruptions by
using debug zones . Note that to use the standard kernel debugger, KITL should be imple-
mented for the particular hardware platform and selected transport method .

If you want to have the capability to debug any part of the system, you should build a Debug
OS image . If you want to debug an entire driver, then it is enough to build a Retail OS image
that includes the kernel debugger, KITL, and the debug version of the driver with all auxiliary
debug files . If you want to debug an entire driver and a part of the system, you should in-
clude the components in the previous case, as well as the debug version of the required sys-
tem part with all auxiliary debug files in the image . For detailed information about building
an OS image, see Chapter 4, “Build System .”

Debug zones are an improved version of the “printf debugging” technique and include the
possibility to configure the output at run-time, as well as integrating with Platfrom Builder .
Fundamentally, debug zones send conditional output to the debug output . In this way, de-
bug zones can provide you with information about your driver execution without interrupt-
ing an execution .

All the supplied system code actively uses debug zones, so you can see not only the output
from your driver debug zones but also most of the surrounding system activity . This capabil-
ity can be helpful to discover and resolve problems during driver development .

156 Chapter 6 Driver Architecture

To use debug zones in your own code you should do the following:

n Include dbgapi .h in the driver’s header file: #include <DBGAPI.H>

n Define masks for debug zones, such as:

//zone 0

#define ZONEMASK_INIT (0x00000001<<0)

//zone 1

#define ZONEMASK_ACTIONS (0x00000001<<1)

//zone 2

#define ZONEMASK_EXCEPTIONS (0x00000001<<2)

//zone 14

#define ZONEMASK_WARNING (0x00000001<<14)

//zone 15

#define ZONEMASK_ERRORS (0x00000001<<16)

n Define flags to use in conditional debug zones output, such as:

//true if zone 0 is enabled

#define ZONE_INIT DEBUGZONE (0)

// true if zone 1 is enabled

#define ZONE_ACTIONS DEBUGZONE (1)

// true if zone 2 is enabled

#define ZONE_EXCEPTIONS DEBUGZONE (2)

// true if zone 14 is enabled

#define ZONE_WARNING DEBUGZONE (14)

// true if zone 15 is enabled

#define ZONE_ERRORS DEBUGZONE (15)

n Define parameter dpCurSettings, such as:

DBGPARAM dpCurSettings = {

 //Usually name of module

 TEXT("MyDriver"),

 { // Names for 16 zones

 TEXT("Init"),TEXT("Actions"),TEXT("Exceptions"),TEXT(""),

 TEXT(""),TEXT(""),TEXT(""),TEXT(""),

 TEXT(""),TEXT(""),TEXT(""),TEXT(""),

 TEXT(""),TEXT(""),TEXT("Warnings"), TEXT("Errors")

 },

 // Zones enabled by default

 ZONEMASK_ERRORS| ZONEMASK_EXCEPTIONS|ZONEMASK_INIT

};

n Register debug zones by using appropriate macros, such as:

o DEBUGREGISTER() for Debug build . Use NULL as parameter if uses for .exe . Use
handle as parameter if uses for .dll .

o RETAILREGISTERZONES() for retail and debug build . Use NULL as parameter if
uses for .exe . Use handle as parameter if uses for .dll .

n Include appropriate macros in the driver code (see Table 6–10 for details) .

 Driver Development 157

n Make appropriate OS build (Debug or Retail) .

n Load the image to device .

n Use Platform Builder to configure active debug zones for your module (see Chapter 2
for more information) .

TABlE 6–10 Debug zone macros.

Macros Description

RETAILMSG (<Expression>, <Message>) Conditionally outputs a printf-style formatted
message .

RETAILLED (<Condition>,<Parameters>) Conditionally outputs WORD value to the LED .

ERRORMSG(<Expression>, <Message>) Conditionally outputs a printf-style formatted
message with ERROR with the file name and
line number of the error .

DEBUGMSG(<Expression>, <Message>) Conditionally outputs a printf-style formatted
message .

DEBUGLED(<Condition>,<Parameters>) Conditionally outputs a WORD value to the
LED .

DEBUGCHK(<Expression>) Asserts an expression and produces a
DebugBreak if the expression is FALSE .

DEBUGZONE(<Zone Id>) Tests the mask bit in the current debug zone
settings .

DEBUGREGISTER(<Handle>) Registers debug zones for your process or
module only on Debug builds .

RETAILREGISTERZONES(<Handle>) Registers debug zones on Debug and Retail
builds

 159

Chapter 7

Starting the Operating System
Understanding the processes that take place during the system startup is important for
building devices based on Microsoft Windows Embedded CE . As we look at the process of
system initialization, the role of each of the components that make up the system kernel,
as well as the role of the included code and custom code developed by the Board Support
Package (BSP) manufacturer, becomes much clearer .

No boot loader is required in order to load the Windows Embedded CE operating system
(OS) . The use of a boot loader simplifies development tasks significantly, but its presence is
not required for the end device . It implies that the image of the operating system is located
in ROM and that during a device startup, a jump is made to the address of the kernel startup
function . However, not all platforms support such an option (for example, x86) . Using the
boot loader makes it possible to perform a preliminary platform preparation, to load the
image of the operating system into the correct location in RAM, and only then jump to the
kernel startup function .

At first, let us look at how the boot loader performs during the system startup . For more
 information about the boot loader implementation, see Chapter 5, “Board Support Package
(BSP) .” Next, we shall take a look at how the Windows Embedded CE kernel is started .

Image Preparation
While building a system image, the following actions are performed to prepare an image for
execution:

n Preparing for the execution of the OS image in place (in accordance with the settings of
the CONFIG section of the binary image builder (.bib) file) .

n Creating a special structure that contains information about the image contents and
table of contents (TOC) .

n Assigning the pTOC variable in Nk .exe the meaning of a TOC pointer .

This results in an image that is ready to execute in certain addresses of virtual memory that
contains a special structure depicting the image contents . In order to launch the system for
execution, the boot loader must load the image into correct addresses; it must then verify
that by shifting from the start of the image by 0x40, the CECE signature (0x43454345) is
present [the ECEC in memory (0x45434543)] . Next to it, there is a pointer to the ROMHDR
structure, and after that, there is a pointer to the TOC (pTOC) structure . The boot loader

160 Chapter 7 Starting the Operating System

reads the value of the pointer to the TOC structure and validates the entry for NK .EXE .
Following that, it jumps to the address of the kernel startup function .

The startup kernel function StartUp() is developed by using assembler language .
Implementation can be separated out . It can take place partly in the platform’s common
code (\PLATFORM\COMMON\SRC\SOC\<SOC_DIR>\OAL\STARTUP\ and (\PLATFORM\
COMMON\SRC\<CPU_FAMILY>\COMMON\STARTUP\), and partly in BSP code directly
(\PLATFORM\<PLATFORM_ NAME>\SRC\OAL\OALLIB\) . This function’s code depends heavily
on the platform . The main tasks of the StartUp function are to transfer the processor into a
predefined state and to perform an appropriate low-level initialization of the hardware, in-
cluding initializing the memory controller, disabling interrupts, TLB cache and the Memory
Management Unit (MMU) module, and performing initialization of the system-on-chip
(SOC) . After the processor is initialized, the StartUp function will call the functions KernelStart
or KernelInitialize (x86) (\PRIVATE\WINCEOS\ COREOS\NK\LDR\<CPU_FAMILY>\) . The
KernelStart/KernelInitialize function performs the following main actions:

n Copies sections defined in the ROMHDR (through ulCopyEntries, and ulCopyOffset)
into RAM by using KernelRelocate() . After this, global variables Nk .exe become acces-
sible for read and write operations .

n Initializes the first-level page table based on OEMAddressTable (ARM and x86) .

n Enables the MMU module and cache (ARM and x86) .

n Finds the entry point into kernel .dll (FindKernelEntry) .

n Calls the kernel entry point by passing a pointer to KdataStruct as a parameter, which
also contains a pointer to the OEMInitGlobals and OEMAddressTable functions (x86 and
ARM) .

In the current implementation, the kernel .dll entry point function is named NKStartup() .
Its implementation is located in the \PRIVATE\WINCEOS\COREOS\KERNEL\<CPU_FAMILY>\
 directory . The kernel entry point function performs the following actions:

n Initializes the NKGLOBALS structure . This structure contains all functions and variables
that are exported by the kernel to the OAL and Kernel Independent Transport Layer
(KITL) if KITL is implemented as a separate DLL library .

n Calls the OEMInitGlobals function by passing the initialized NKGLOBALS structure to it .

n OEMInitGlobals returns the structure OEMGLOBALS . This structure contains all
 functions and variables that are exported by the OAL to the kernel and KITL layer if KITL
is implemented as a separate DLL library .

n The ARMSetup() function is called for ARM processors, whereas the MIPSSetup()
 function is called for Microprocessor without Interlocked Pipeline Stages (MIPS)
processors .

 Startup Process 161

n If the image has KITL, the kernel attempts to load it and calls the entry point .

n The OEMInitDebugSerial() function is called .

n By using the OEMWriteDebugString() function, the kernel outputs to the debug output
a string that containes the information about the kernel starting with “Windows CE
Kernel for . . .” .

n The OEMInit() function is called which initializes the hardware platform .

n The KernelFindMemory() is called, (\PRIVATE\WINCEOS\ COREOS\NK\KERNEL\loader .c) .

n The KernelInit() function is called (\PRIVATE\WINCEOS\COREOS\ NK\KERNEL\nkinit .c) .
For ARM, the KernelStart() function is called from (\PRIVATE\WINCEOS\COREOS\NK\
KERNEL\ARM\armtrap .s, which calls KernelInit() .

n In some architectures, a forced rescheduling is performed after the exit from
KernelInit() .

Startup Process
Figure 7–1 shows part of the system startup process: StartUp() – KernelStart()/
KernelInitialize() – NKStartup() (<Kernel Entry>()) . The code implemented in the OAL layer is
shown in gray . It also shows the main tasks being performed and the functions called .

The OEMInit() function is implemented in the OAL layer, and it is responsible for platform
 initialization including the interrupt, timer, KITL, and bus .

The KernelInit() calls the following functions:

n APICallInit () configures the system API: \PRIVATE\WINCEOS\ COREOS\NK\KERNEL\
apicall .c .

n HeapInit () initializes the kernel heap: \PRIVATE\WINCEOS\ COREOS\NK\KERNEL\heap .c .

n InitMemoryPool () initializes a physical memory pool: \PRIVATE\WINCEOS\COREOS\NK\
KERNEL\physmem .c .

n PROCInit () initializes infrastructure for support processes: \PRIVATE\ WINCEOS\
COREOS\NK\KERNEL\process .c .

n VMInit () initializes virtual memory for the kernel process: \PRIVATE\WINCEOS\
COREOS\NK\KERNEL\vm .c .

n THRDInit () initializes threads; creates a tread with a working SystemStartupFunc func-
tion and launches that thread for execution by using the MakeRun() function: \PRIVATE\
WINCEOS\COREOS\NK\ KERNEL\thread .c .

n MapfileInit () initializes support for memory-mapped files: \PRIVATE\WINCEOS\
COREOS\NK\ MAPFILE\mapfile .c .

162 Chapter 7 Starting the Operating System

KernelStart()/KernelInitialize()

StartUp()

Section Copy

First-level Page Table

MMU and Cache Enabled

FindKernelEntry()

KDataStruct

<Kernel Entry> ()

NKGLOBALS

OEMInitGlobals()

OEMGLOBALS

KITL

OEMInitDebugSerial()

OEMWriteDebugSerial()

OEMInit()

KernelFindMemory()

KernelInit()

Adaptation Tasks

FIguRE 7–1 System startup process StartUp()-><KernelEntry>

The SystemStartupFunc() function (\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule .c)
performs the following actions:

n Calls the KernelInit2() function that completes kernel initialization .

n Calls the LoaderInit() function the initializes the kernel loader for EXE/ DLL – \PRIVATE\
WINCEOS\COREOS\NK\KERNEL\loader .c .

n Initializes a cookie that protects the stack: __security_init_ cookie() .

n Initializes a page pool: PagePoolInit(), CELog, profiler, etc . - LoggerInit(), system
 debugger – SysDebugInit() .

n Calls IOCTL – IOCTL_HAL_POSTINIT . A developer can use its implementation for
 additional initialization after kernel initialization .

n Creates two threads that are ready to execute . The first one has a working
PowerHandlerGuardThrd function and the second one has a working RunApps
function .

 Startup Process 163

The RunApps() function (\PRIVATE\WINCEOS\COREOS\NK\KERNEL\kmisc .c) performs the
 following actions:

n Loads filesys .dll .

n Creates a thread ready for execution with a working function, which is the entry point
of filesys .dll .

n If the image has filesys .dll and the file system, it waits for the file system to be initialized
(SYSTEM/FSReady event), then loads MUI and system settings from the registry and in-
forms the file subsystem about completion of required tasks: (* pSignalStarted) (0) .

n A thread becomes a thread for cleaning dirty pages in the background .

Figure 7–2 shows part of the process of system startup: KernelInit() – SystemStartupFunc() –
RunApps() . It also shows the main tasks performed and the functions called .

KernelInit()

APICallInit()

HeapInit()

InitMemoryPool()

PROCInit()

VMInit()

THRDInit()

MapfileInit()

SystemStartupFunc()

KernelInit2()

RunApps()

Loads Filesys.dll

LoaderInit()

Security Init Cookie()

IOCTL HAL POSTINIT

FIguRE 7–2 System startup process KernelInit()->RunApps()

164 Chapter 7 Starting the Operating System

loading the File System
Let us proceed to the process of loading filesys .dll . As opposed to the previously covered
parts of the kernel, the source code of filesys .dll is not provided in Shared Sources, and
therefore, the load of filesys .dll can be traced by using the load log by setting certain values
in Debug Zones as well as by using the code that interacts in some way with the loading of
filesys .dll .

Next, we shall look at the cold boot . During the cold boot, filesys .dll performs the following
main actions:

n Initializes the object store memory and maps it for itself .

n Initializes an application programming interface (API) set of the file system and inter-
mediate APIs (databases, point-to-point message queue, event log, and registry) .

n Initializes registry data .

o The initialization procedure will differ depending on the type of registry used
(hive–based or RAM–based) .

o During this stage, the Device Manager (device .dll) can be loaded if it is necessary
to load the drivers for accessing the media where the hive–based registry is going
to be stored .

o If the Device Manager (device .dll) is loaded during this stage, then after the nec-
essary drivers are loaded, device .dll is suspended while waiting for the initializa-
tion of filesys .dll to be finalized .

n Informs the kernel that filesys .dll performed base initialization (sets the SYSTEM/
FSReady event) and waits for a signal from the kernel – (* pSignalStarted) (0) to con-
tinue initialization (see the RunApps() function above) .

n Filesys .dll launches applications specified in the registry key HKEY_LOCAL_MACHINE\
Init .

o If this registry key contains the Device Manager (device . dll) and it’s already been
loaded, filesys .dll sets the SYSTEM/BootPhase2 event . After this message is re-
ceived, the Device Manager continues to load the drivers (\PRIVATE\WINCEOS\
COREOS\ DEVICE\DEVCORE\devcore .c) .

After the initialization of filesys .dll completes, the system is completely operational . Figure
7–3 shows part of the process of starting the system through filesys .dll and the main tasks
being performed .

 Loading the Device Manager 165

Filesys.dll

Object Store

File System and Related API

Registry

Runs Applications from the
HKLM/Init Key

FIguRE 7–3 System startup process through filesys .dll

loading the Device Manager
The Device Manager (device .dll) loaded during the system startup reads the RootKey
value in the registry key HKEY_LOCAL_ MACHINE\Drivers . Next, the Device Manager calls
ActivateDeviceEx with the HKEY_LOCAL_MACHINE\<RootKey> key, where <RootKey> is the
value of RootKey . By default, this value is equal to \Drivers\BuiltIn .

HKEY_LOCAL_MACHINE\<RootKey> contains the settings for bus enumerator (BusEnum .dll) .
The bus enumerator driver reads all sub keys in the registry key where it’s located, and for
each key it calls the ActivateDeviceEx() function . The order in which the drivers are calling
ActivateDeviceEx() is determined by their Order value . The drivers with lower Order values
are loaded first . Drivers without the Order value being set are loaded after the drivers with
an Order value, which are usually in the registry’s enumeration order .

If the Device Manager is loaded when the registry is initialized, it first loads the drivers from
the registry’s boot section that is mounted by filesys .dll (Boot .hv) . The load procedure is the
same as the one described above .

Let us look at the format of values of the HKEY_LOCAL_MACHINE\Init key for automatically
launching applications at the system startup . The Init key may contain two types of values:
one with a name of LaunchXX and DependXX type, where XX value can be between 00
and 99 .

LaunchXX contains a value of REG_SZ type, which must be the name of the program that
needs to be launched, e .g ., program .exe, without parameters . The value of XX determines the
load order; the lower the XX value, the earlier the application will be launched .

DependXX contains a value of the REG_BINARY type; it also makes it possible to deter-
mine the dependencies of applications on other applications during the load by specifying
what applications should be loaded before the application specified in the corresponding
LaunchXX key . Indexes of XX applications that the specified application is dependent on are
indicated as a list of words string (word–2 bytes), with the words’ byte order reversed .

166 Chapter 7 Starting the Operating System

The application specified in the Init key must inform the system that it loaded successfully
and that dependent applications can be loaded by calling the SignalStarted() function with
a parameter that is passed to it by the system as a command line parameter during the load
process . This is why it is impossible to specify command line parameters when loading ap-
plications from the Init key .

Following is an example of the registry key Init content:

[HKEY_LOCAL_MACHINE\Init]

“Launch10” = “shell.exe”

“Launch20” = “device.dll”

“Depend20” = “hex:0a,00”

“Launch30” = “gwes.dll”

“Depend30” = “hex:14,00”

“Launch50” = “explorer.exe”

“Depend50” = “hex:14,00, 1e,00”

In this case, the shell .exe application will be launched first; next—the Device Manager (de-
vice .dll), which depends (in this example) on shell .exe; next, gwes .dll is loaded, which depends
on the Device Manager; finally, explorer .exe is loaded, which depends on the Device Manager
(device .dll) and gwes .dll .

 167

Chapter 8

Building Devices
The process of building devices based on Windows Embedded CE can be separated out into
several stages:

n Device planning .

o Requirements definition .

o Selection and/or planning of hardware development .

o Selection of a base template for the operating system (OS) design .

o Planning of image deployment for production .

n Development of the hardware platform (optional) .

n Development and customization of a Board Support Package (BSP) for a selected hard-
ware platform (optional) .

o Launching Windows Embedded CE on a selected hardware platform .

o Driver development .

n Operating system design .

o Configuring a run-time image .

o Developing applications .

o Building and testing intermediate versions of the image .

o Creating a Software Development Kit (SDK) to enable third-party developers to
build solutions for this device .

n Building the final version of the image for testing and release .

n Final testing of the image .

n Image deployment for production .

The process of building a device starts with a planning phase . This phase is no less impor-
tant than BSP development or image design . Planning can help ensure that the device is
implemented with the fewest resources and in the expected time . A traditional approach to
development consists of defining the requirements and the features of the target device .
The more complete the requirements, the more possible it is to accurately select a suitable
hardware platform for the device . During the planning phase, you can perform testing of
the Windows Embedded CE operating system on the available hardware platforms in order
to determine more precisely the hardware and software requirements of the device . Often

168 Chapter 8 Building Devices

times during the planning phase, developers do not consider how OS images are moved to
the device during the production phase . This is a critical factor that may considerably in-
crease the production costs . For instance, in the case of medium and large volumes, if OS im-
ages require manual loading to each device, this can substantially increase labor costs .

There are two options in hardware platform selection: use an existing platform or develop
a new, independent one . When an existing platform is selected, it is necessary to make sure
that the BSP is accessible in the same form as is needed for implementing the device require-
ments . For instance, if you need to connect additional peripheral devices to the main device
and reconfigure the interrupt controller to perform the tasks that will be implemented by the
device, then, most likely, it would be necessary that BSP source codes are accessible . If, on the
other hand, you need to simply deploy a specialized application over a hardware platform
with standard functionality, then, most likely, the BSP source codes would not be necessary .

It is essential to understand the importance of BSP accessibility for a selected platform . The
absence of a BSP prolongs the development time considerably, which increases the overall
development costs . BSP development is the most labor-intensive part of a device-building
process . It requires that the developer know the hardware architecture as well as the operat-
ing system architecture . All of the interaction between the operating system and the plat-
form is implemented in the BSP . Therefore, the quality of the BSP determines the resulting
quality of the device .

Nevertheless, the implementation of the device requirements may require the creation of a
custom device hardware design . In this case, it is necessary to make sure that the source code
has a BSP that is sufficiently similar to the hardware platform of the device . The presence of
such a BSP may be of considerable help during the development of a custom BSP .

Please note the development tools included with Platform Builder for Windows Embedded
CE 6 .0 R2 contain several examples of BSP implementation—at least one BSP for each of the
following supported processor architectures: ARM, x86, SH4, and Microprocessor without
Interlocked Pipeline Stages (MIPS) .

The basics of BSP development are covered in Chapter 5, “Board Support Package (BSP)” .
During BSP development, the components involved include the following:

n Boot loader .

n OAL and Kernel Independent Transport Layer (KITL) .

n Drivers .

A boot loader is not required for a BSP, but its presence speeds up the development process
considerably . A considerable portion of the boot loader code and OAL code is common . An
important function of a BSP is support for KITL over the transport that is accessible on the
hardware platform, such as serial port, Ethernet, and Universal Serial Bus (USB) . KITL sup-
port is practically a mandatory requirement to ensure the efficiency of the development of

 169

drivers and for debugging the image of the operating system . KITL can be part of the OAL,
or it can be implemented as a separate library . After the main functionality of OAL has been
implemented, you can start implementing the drivers for peripheral devices . Note that the
mechanism of transforming a hardware interrupt into a system identifier resides in the OAL
layer and can be expanded by using installable interrupt service routines when OAL supports
this functionality .

For more information about the architecture of the operating system and the drivers, see
Chapter 3, “Operating System Architecture,” and Chapter 6, “Driver Architecture .”

During the planning phase, it is also necessary to determine the type of a device to build . The
device type selection determines the standard design template to use as a base when build-
ing the device run-time image . Windows Embedded CE 6 .0 R2 contains the following device
design templates and template versions:

n Consumer media device .

o Digital media receiver .

o Set-top box .

o Custom device .

n Industrial device .

o Industrial controller .

o Internet appliance .

o Gateway .

n PDA device .

o Mobile handheld .

o Enterprise Web pad .

n Phone device .

o IP phone basic .

o IP phone advanced .

o Small-footprint device .

n Thin client .

o Windows Thin Client .

o Enterprise terminal .

o Windows network projector .

The main list contains the device design templates . The sub-items contain different versions
of the same template . Table 8–1 provides a detailed description of the purpose of each tem-
plate version .

170 Chapter 8 Building Devices

TABlE 8–1 Device design templates.

Design
Template

Design Template
Version

Description

Consumer
Media Device

Digital Media
Receiver

Devices that will play and/or store various multi-media resourc-
es, including music, video, and images .

Consumer
Media Device

Set-Top Box Devices that will be connected to the TV to access the Internet
and to view multimedia resources . By default, it is built with a
standard CE shell and a browser that has TV navigation mode
enabled .

Custom Device – By default, no catalog components are selected . This enables
you to select only the required components while going
through the OS Design Wizard .

Industrial
Device

Industrial
Controller

Industrial automation devices such as control panels and pro-
grammable controllers .

Industrial
Device

Internet
Appliance

Devices with a keyboard, monitor, and usually with a browser-
based interface .

Industrial
Device

Gateway Devices that function as a network gateway and provide wired
and wireless access to Internet connections from a home net-
work .

PDA Device Mobile Handheld Mobile devices that support a touch screen and/or a keyboard,
such as warehouse terminals for tracking merchandise .

PDA Device Enterprise
Web Pad

A touch screen–based Web Pad with a screen resolution from
640x480 and higher; a standard CE shell and additional applica-
tions with their own application–based or browser–based shell .

Phone Device IP Phone Basic VoIP phone without a user interface .

Phone Device IP Phone
Advanced

VoIP phone with a user interface, contacts, and a rich and con-
figurable user interface, which may include Windows Messenger
and a browser .

Small
Footprint
Device

– Devices for which the image size is a significant requirement .
It implies that all the required components will be selected
 directly from the catalog .

Thin Client Windows
Thin Client

Devices with a minimum interface that enables you to obtain
access by using the Remote Desktop Protocol (RDP) and, pos-
sibly, to use a browser .

Thin Client Enterprise
Terminal

Devices that provide a more familiar thin client interface to a
corporate user, such as a self-serve kiosk with its own shell, a
cash register, etc .

Thin Client Windows
Network
Projector

Devices that map the Remote Desktop of a personal computer
running Vista with RDP, such as network projectors .

After the initial design template has been selected, you need to create a base OS design
and configure it in accordance with the device requirements . Please note that even if a

 171

 self-developed BSP is used, it is necessary to clone it prior to creating a base image and use
the cloned version from that point on .

The following main settings are available for the OS design:

n Adding/removing components from the catalog into the OS design .

n Setting the parameters in the configuration files . For more information about configu-
ration files, see Chapter 4, “Build System .”

o Registry (* .reg) .

o Device memory and image contents (* .bib) .

o Initialization of the RAM–based file system (* .dat) .

o Built-in databases (* .db) .

Project settings that are accessible through the Project Properties dialog box . For more
information, see Chapter 2, “Operating System and Application Development Tools .”

o General settings .

o Locale settings .

o Build settings (configuring the appropriate build variables) .

o Setting optional build variables directly .

o Additional actions during the build process .

The next stage is to create the main application or a set of device applications that provide
the main device functionality . This stage can also include the configuration and customiza-
tion of applications included with Windows Embedded CE 6 .0 R2, such as Windows Thin
Client or VoIP phone based on the IP phone advanced template . Keep in mind that the code
provided with the development tools must be cloned .

During the development process, the OS image builds are preformed regularly for the purpose of
driver and application debugging . It is also recommended that the developers create intermedi-
ate builds for the testing that must be performed and, if necessary, also create intermediate SDKs
for the purpose of developing and/or testing of third-party development for the device . The use
of the above-mentioned approach enables the developer to identify the problems, if they appear,
prior to final testing of the OS image/device before releasing it to production .

Once these tasks have been completed, you need to build the image for final testing and
production .

For production purposes, the release version of the image is built without KITL, debugger, and
profiling support, with the Enable Ship Build option set, and usually without CE Control Shell
(CESH) . It may be necessary to create an image with different settings for testing purposes .

After passing the necessary tests, the final image is ready to be moved to production . If test-
ing has uncovered substantial problems, it is necessary to perform additional customization
tasks according to the cycle described above .

172 Chapter 8 Building Devices

Figure 8–1 shows the process for building a device .

Device Planning

Requirements Gathering

Hardware Platform Selection

Hardware Development Plan

Base Template Selection

Production Planning

Hardware Platform Development

BSP Development/Customization

Loader Development/Customization

OAL Development/Customization

KITL Development/Customization

Driver Development/Customization

OS Design

Base OS Design Creation

OS Design Configuration

Application Development

Intermediate Version Builds

SDK Builds

Third-party Software Integration

Third-party Software Development Final Version Build

Testing

Release

FIguRE 8–1 Process for building a device

Subsequent chapters cover typical tasks that come up during the process of building a device .

 BSP Cloning 173

BSP Cloning
Any development process should start from cloning a BSP . It is important to understand that
any changes made to the BSP during the development will be used in all future OS designs
based on that BSP .

BSP cloning is done by using the development tools . To access the tools select Tools, then
Platform Builder for CE 6 .0, and from the drop-down menu, choose Clone BSP . A Clone Board
Support Package window appears, as shown in Figure 8–2 .

FIguRE 8–2 Cloning a BSP dialog

From the drop-down list, select Source BSP, enter the following information about the new
BSP that will be created as a result of cloning:

n name the name of the package the way it will appear in the component catalog .

n Description description of the package the way it will appear in the component
catalog .

n Platform directory the name of the new directory in %_WINCEROOT%\• PLATFORM
where the source BSP will cloned into .

n Vendor BSP manufacturer’s name the way it will appear in the component catalog .

n Version BSP version name the way it will appear in the component catalog .

If the Open New BSP Catalog File in Catalog Editor flag is set, then after cloning is complet-
ed, the new BSP file will open in the catalog file editor .

Figure 8–3 shows an example of a completed form .

174 Chapter 8 Building Devices

FIguRE 8–3 Completed form example

After the form is filled out, click Clone and wait until cloning completes . This process creates
a corresponding BSP directory, as shown in Figure 8–4 .

FIguRE 8–4 BSP directory

The BSP is an available selection item from the Third Party section of the catalog, as shown in
Figure 8–5 .

 Cloning a Component or a Project 175

FIguRE 8–5 BSP selection item

After cloning, it can be used just like any other BSP .

If the Open New BSP Catalog File in Catalog Editor flag was set during the cloning process,
the BSP catalog file will open in Catalog Editor . You can perform the necessary editing tasks
in that file, as shown in Figure 8–6 .

FIguRE 8–6 Catalog Editor

Cloning a Component or a Project
Development tools come with a great deal of source code for drivers, programs, static librar-
ies, and dynamic libraries . Often, the developer needs to modify the source code included
with the component’s development tools in order to perform a certain task .

Chapter 4, “Build System,” includes a detailed discussion of the process of building a
Windows Embedded CE operating system and its components . All components are repre-

176 Chapter 8 Building Devices

sented by a folder or a folder hierarchy in the file system located in special catalogs (PUBLIC,
PRIVATE) on different levels starting from the build tree root %_WINCEROOT%, plus the con-
figuration files that control the build process (Sources, Dirs) . Similar to the BSP process, the
changes will be made to each of the OS designs that use that particular driver, program, or
library . It is important to keep in mind that subsequent upgrades to the development tools
may erase those changes . It is for these reasons that it is necessary to clone the part of the
code that will keep changing .

Because components are represented by folders and folder trees, cloning is done by simply
copying and making the needed corrections in the Sources file . Drivers are cloned into the
platform directory; other projects are simply cloned into the operating system design directory .

For the projects that generate .DLL and .EXE files on output, the process of cloning is simpli-
fied by using the Sysgen_capture .bat utility, which collects all the necessary settings into the
Sources file . Projects that generate .LIB files are usually cloned by simple copying, possibly by
taking into account general settings of the Sources file (see Sources .cmn below) . Some of the
catalog components can be cloned by using built-in development tool options . To do that,
right-click the component, and, if the built-in utility can clone this component, the drop-
down menu will display the Clone Catalog Item . Click that item to launch the cloning process .

In conclusion, a few recommendations regarding cloning:

n When cloning a project, go up the catalog hierarchy and if you locate the Sources .cmn
file—add from that file into the copied Sources file either the entire content or the fol-
lowing variables:

o COMMONPUBROOT .

o __PROJROOT .

o _ISVINCPATH .

o _OEMINCPATH .

n After copying is done, it is necessary to set/change the settings of at least the following
variables in accordance with the following tasks:

o RELEASETYPE specifies where the build results will copied to . For drivers and
projects that are related to a specific hardware platform and were cloned into an
appropriate BSP directory, the release type is set in PLATFORM . For other projects
the type is set depending on the purpose of the project and can be LOCAL, OAK,
SDK, DDK, CUSTOM .

o Set WINCEOEM as 1 This is necessary to ensure that the project can link to
system libraries and header files of the projects that are built from the PUBLIC
directory .

Please note that these settings are also available in the Project Settings dialog box .

 Automatic Application Launch at Startup 177

Automatic Application launch at Startup
When custom built applications are integrated into an OS image, there is often a require-
ment for them to launch automatically at startup .

The process of starting the operating system is discussed in more detail in Chapter 7,
“Starting the Operating System .” At startup, the system loads all applications specified in
the HKEY_LOCAL_MACHINE\Init registry key with the values of LaunchXX type, where XX
can be between 00 and 99 and represent the sequence that applications are launched . If
it is necessary to specify the dependency of a launched application on other automatically
launched applications, the DependXX values are used, where XX matches the XX value in the
LaunchXX key where dependency is specified .

LaunchXX contains a value of the REG_SZ type which must be the name of the program that
needs to be launched, such as program .exe, without the parameters . The XX value deter-
mines the load order, so the lower the XX value, the earlier this application launches .

DependXX contains a value of the REG_BINARY type, which enables you to determine the
dependency of applications on other applications during the load by specifying which ap-
plications must be loaded prior to the application specified in the corresponding LaunchXX
key . The indexes of XX applications that a given application is dependent on are specified as
a lists of words (a word is 2 bytes) with a reverse byte order .

The application specified in the Init registry key must inform the system that it has loaded
successfully and the dependent applications can be loaded by calling the SignalStarted()
function with a parameter that it is passed to by the system as a command line parameter
during the load . This is precisely the reason why it is not possible to specify the command
line parameters from the Init key during the application load .

An example of the Init registry key is shown below:

[HKEY_LOCAL_MACHINE\Init]

“Launch10”=“shell.exe”

“Launch20”=“device.dll”

“Depend20”=“hex:0a,00”

“Launch30”=“gwes.dll”

“Depend30”=“hex:14,00”

“Launch50”=“MyShell.exe”

“Depend50”=“hex:14,00, 1e,00”

In this case, the shell .exe application launches first, then it loads the Device Manager (device .
dll), which depends (in the example) on shell .exe, then it loads gwes .dll, which is dependent
on the Device Manager, and finally, MyShell .exe, which depends on both the Device Manager
(device .dll) and gwes .dll .

178 Chapter 8 Building Devices

In order to launch your own application, you need to specify appropriate values in the OS
design registry file (Project .reg) located in the Parameter Files folder of the Solution Explorer
window, as shown in Figure 8–7 .

FIguRE 8–7 OS design registry file

Double-click the file to open a graphic registry file editor where you can conveniently enter
the necessary values into the registry, as shown in Figure 8–8 .

FIguRE 8–8 Registry file editor

Before configuring settings for an automatic startup, it is necessary to make sure that they
will not override the general system settings and BSP settings . To view general system set-
tings, open and view the Common .reg file in the file editor, as shown in Figure 8–9 .

 Automatic Application Launch at Startup 179

FIguRE 8–9 Editing Common .reg in the file editor

In order to view the BSP settings, it is necessary to open and view the Platform .reg file of the
corresponding BSP used in a given design, as shown in Figure 8–10 .

FIguRE 8–10 Viewing the Platform .reg file

180 Chapter 8 Building Devices

Automatic load of Drivers During the System Startup
When custom built drivers are integrated into a device OS image, it is often required that
these drivers be loaded automatically at the system startup .

The process of starting the operating system is discussed in more detail in Chapter 7,
“Starting the Operating System .” The Device Manager (device .dll) is responsible for loading
stream drivers at startup .

The Device Manager (device .dll) loaded at the system startup reads the value with the
RootKey name in the HKEY_LOCAL_MACHINE\Drivers registry key . Next, the Device Manager,
calls ActivateDeviceEx with the HKEY_LOCAL_MACHINE\<RootKey> key where <RootKey> is
the RootKey value . By default, this value is \Drivers\BuiltIn .

The HKEY_LOCAL_MACHINE\<RootKey> contains the settings for loading the bus enumera-
tor (BusEnum .dll) . The bus enumerator driver reads all sub-keys of the registry key where it
is located, and for each key, it calls the ActivateDeviceEx() function . The order of calling the
ActivateDeviceEx() function for the drivers is determined by the settings of their Order value .
The drivers with the lesser Order values are loaded first . Drivers without the Order settings
are loaded after the drivers with the Order settings in accordance with the registry’s numeri-
cal sequence .

In order to configure an automatic load of a custom-built stream driver during the system
startup, it is necessary to enter appropriate values into the OS design registry file (Project .reg)
located in the Parameter Files folder of the Solution Explorer window, as shown in Figure 8–11 .

FIguRE 8–11 OS design registry file

Figure 8–12 shows an example of the registry settings for the MyDriver .dll driver whose func-
tions are implemented without a prefix (the Flags value is equal to 8) .

 Device Power Management 181

FIguRE 8–12 Registry settings for MyDriver .dll

Device Power Management
Power management is one of the important tasks for the device in general and is critical for
mobile devices that are not permanently connected to an AC power source .

Windows Embedded CE includes a base implementation of the power-management sub-
system named Power Manager . Power Manager is represented by two catalog items: Power
management and Power management minimal .

Power Manager provides applications and drivers of peripheral devices with an infrastruc-
ture that enables them to manage power efficiently . This includes requesting that a neces-
sary power state is set for peripheral devices or the system as a whole . The use of the power
management mechanism enables you to detach the overall power state of the system from
the power state of a specific peripheral device . For example, when the system is switched
to a lower power usage state, the GSM/GPRS will continue to receive the power needed for
implementing the functionality of receiving calls and transferring data . Power manager is the
central point for collecting information regarding the general status of power usage by the
system and peripheral devices, as well as the information about power management require-
ments for devices . Power Manager uses this information to perform itsnecessary actions by
utilizing the built-in power management algorithm .

Power Manager interacts with applications and device drivers to ensure that peripheral de-
vices and the system in general operate in a required power state . Applications and drivers
are not required to support power management . Power Manager interacts only with those
device drivers and applications that inform it about power management support .

182 Chapter 8 Building Devices

In order to interact with Power Manager, an application must use a special application pro-
gramming interface (API) set . For the Power Manager to be aware that a driver supports
power management, the driver must contain an identifier of an appropriate device class
in its registry settings (IClass parameter), or during initialization, the driver must call the
AdvertiseInterface function with the same class identifier .

A base Power Manager is implemented by using a layered MDD/PDD architecture (see
Chapter 6, “Driver Architecture“) . The source code is located in the \PUBLIC\COMMON\
OAK\DRIVERS\PM\ folder . The PDD part of the driver determines power management states
supported by the system, as well as the logic and the method of switching from one power
management state to another . A device manufacturer can rewrite the PDD part of the Power
Manager in accordance with its own power management requirements for the target device .

FIguRE 8–13 Power Manager registry settings

Peripheral devices can have four predefined states:

n Full on marked in registry settings as 0 .

n low on marked in registry settings as 1 .

n Standby marked in registry settings as 2 .

n Sleep marked in registry settings as 3 .

n Off marked in registry settings as 4 .

 Device Power Management 183

Registry settings are used to map the power states of the system to the power states of pe-
ripheral devices and other settings of the power management subsystem . Those settings
are located in the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Power key of
system registry . Figure 8–13 shows an example of the Power Manager registry settings in the
Common .reg file that is opened in a graphic registry editor of the development studio .

In the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Power\State sub key, the
sub keys represent a listing of system power states . Mapping a default device state and
individual devices are specified as values of a corresponding key of the system state, as
shown in Figure 8–14 .

FIguRE 8–14 Mapping of a default device state and individual devices

In Figure 8–14, the Unattended state of the system is mapped into the On (0) state for all
devices except for bkl1: (backlight) and wav1: (audio output) – those are Off (4) . The globally
unique identifier (GUID) of the key, which determines the system’s power state, is used by
the sub keys to specify the settings for mapping the system’s power state to the devices of
an appropriate class (in this case, it is CE_DRIVER_POWER_MANAGEABLE_DISPLAY_GUID, a
 display with a Power Manager support) . In our example, the system’s power state Unattended
is mapped as off (04) for the devices of a display with a Power Manager support class, as
shown in Figure 8–15 .

FIguRE 8–15 Mapping system power state for a class of devices

184 Chapter 8 Building Devices

Base implementation of Power Manager is based on activity timers . The registry key
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Power\ActivityTimers contains
sub keys that determine two activity timers: SystemActivity and UserActivity . The UserActivity
timer is activated if the user does not perform interactive actions during a predetermined
time . The SystemIdle timer is activated if the system has no active processes during a certain
period of time .

When timers are activated, the Power Manager makes a determination to switch to another
power state . The switchover does not happen all at once, but with a certain delay (timeout)
during which the timer must not reset, i .e . timer activation conditions must be retained, such
as no user activity .

The settings for switchover timeouts are kept as values in the HKEY_LOCAL_MACHINE\
System\CurrentControlSet\Control\Power\Timeouts key, as shown in Figure 8–16 . A timeout
value depends on the device power source type at a given time (alternative current or bat-
tery), as well as depending on what power state the system is switching from and to .

FIguRE 8–16 Switchover timeout registry key

The registry key values determine a timeout in seconds . For example, switching from the
On to the UserIdle state results in a 60-second timeout after the UserActivity timer goes off
when it is using a battery power source . If the timer is not reset during that time, there will be
no user activity .

Figure 8–17 shows Power Manager interaction with applications and drivers .

 Device Power Management 185

Power Manager

Power Management API

Applications Drivers

Notification QueueNotifications Notifications

Registration to Receive Notifications
Set Power Requirements

Registration to Receive Notifications
Set Power Requirements

Setting the Power State
Current Power State Request

Supported Functionality Request
Notification of Parent Devices

(IOCTL)

FIguRE 8–17 Power Manager interaction

To ensure support for power management, the peripheral device driver must be a stream in-
terface driver, and it must support the following IOCTL control codes, as shown in Table 8–2 .

TABlE 8–2 IOCTl control codes.

Code Purpose

IOCTL_POWER_CAPABILITIES This IOCTL queries to determine device-specific capabilities . If a driver
fails this IOCTL, the Power Manager assumes the target driver does
not handle the remaining IOCTLs and will not send them . All drivers
that support the Power Manager interface must handle this IOCTL .

IOCTL_POWER_SET This IOCTL requests a change from one device power state to another .
If the driver does not support the proposed device power state, then
it should write its adjusted device power state into pBufOut .

IOCTL_POWER_QUERY This I/O control checks whether changing power states is feasible . This
I/O control is deprecated and is not called by Power Manager .

IOCTL_POWER_GET This IOCTL gets the current device power state . The Power Manager
will only send this IOCTL to drivers that support the power manage-
ment IOCTLs .

IOCTL_REGISTER_POWER_
RELATIONSHIP

This IOCTL notifies the parent device so the parent device can reg-
ister all devices it controls . The Power Manager ignores the return
values from this IOCTL, which provides an opportunity for a parent
device to notify the Power Manager about any active devices that it
controls . The Power Manager sends this IOCTL to devices that include
the POWER_CAP_PARENT flag in the Flags member of the POWER_
CAPABILITIES structure .

186 Chapter 8 Building Devices

Power Manager controls power states of peripheral devices by sending IOCTL control
codes to the drivers that support power management . Applications and drivers can request
changes to a power state of the system in general or a peripheral device . A driver should not
change its power state by itself; it requires that a request is sent to the Power Manager, which
makes a decision whether a power state can be changed . Power Manager may decline the
request of a driver or an application, or it may change a power state to a different level than
what was requested . For example, a device that is in the On mode (0) is requesting to switch
to a sleep mode (3), but the Power Manager, which has complete information about system
processes, may decide to switch the device only to the Low On mode (1) . On the other hand,
a driver may not decline a request from the Power Manager regarding a power change of a
peripheral device, and must process this request .

Drivers and applications use the following API, as shown in Table 8–3, to request changes to
a power state .

TABlE 8–3 API for requesting changes to a power state.

Function Purpose

DevicePowerNotify Sends a request to the Power Manager about changing a power state
of a peripheral device .

Drivers and applications can register in order to receive notifications when power changes
occur by using the following set of API, as shown in Table 8–4 .

TABlE 8–4 API for registering for notifications.

Function Purpose

RequestPowerNotifications Registers a message queue to receive power change notifications .

StopPowerNotifications Stops receiving power change notifications .

Such applications and drivers can request that the Power Manager keep specific peripheral
devices in a certain power state by using the following set of API, as shown in Table 8–5 .

TABlE 8–5 API for keeping peripheral devices in a specific power state.

Function Purpose

SetPowerRequirement Informs the Power Manager about power requirements of a given
peripheral device .

ReleasePowerRequirement Informs Power Manager that it can release previously set power re-
quirements of a given peripheral device .

 Device File System 187

An application can also request that the Power Manager change the power state of the sys-
tem as a whole by using the following API, as shown in Table 8–6 .

TABlE 8–6 API for changing the power state for the system.

Function Purpose

SetSystemPowerState A request sent to the Power Manager about changing a power state
of the system as a whole .

Similar to the situation with a request for a power change of a peripheral device, the Power
Manager may decline an application’s request for a power change of the system .

Device File System
Compared to the desktop Windows operating systems, the Windows Embedded CE file
system is implemented with one root catalog “\” for all mounted file systems . File systems
are mounted as subdirectories of the root catalog; one file system can be mounted as a
root file system . A directory name is determined by the settings of a value with the name
Folder, which is located in the key that contains the Storage Manager’s profile settings:
HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\<Media_Profile_Name> .

Figure 8–18 shows storage manager profiles settings from the Common .reg file that is open
in the registry’s graphical editor of Visual Studio .

FIguRE 8–18 Storage Manager profiles settings from the Common .reg file

Sub keys of the HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\ key represent var-
ious profiles . For the HDProfile representing an IDE hard drive, the folder name is determined

188 Chapter 8 Building Devices

by the LOC_STORE_HD_FOLDER macro, which is replaced by a value during the process of
localization, such as Hard Disk.

The file system types that Windows Embedded CE 6 .0 supports are listed in Table 8–7 .

TABlE 8–7 Supported file system types.

File System Brief Description

FAT or FATFS A standard FAT file system . The maximum file size is 4 GB; it also has a partition
size limit . It is simple to implement and is sufficiently reliable . It is supported by
many operating systems .

exFAT A new file system that removes the limitations of the FAT file system . It enables
you to create files greater than 4 GB in size as well as large size partitions . It can
be extended by the device manufacturer . Supported by Microsoft Windows Vista
with Service Pack 1 .

TFAT An exFAT–based file system that supports transactions . It contains two copies of
FAT tables: it requires support from a media block driver .

BinFS File systems that provide the capability for mounting a * .bin file (which is a result
of romimage .exe execution) as a file system . It enables you to divide the system
image into parts: the part that contains the system kernel and everything else
required to get the media driver up and BinFS where the rest of the system image
resides as part of the .bin file .

CDFS/UDFS File systems that provide the capability for working with CD and DVD media de-
vices .

RAM (object
store)

A new driver of the object store file system that implements a fully functional file
system with directories, files, etc . It removes the restriction that requires that the
file system be mounted in the memory as the root system which was mandatory
in prior versions of the operating system1 . Now, just like all other file systems, this
file system is managed by FSD Manager2 .

RELFSD During the development, the file system mounts a release directory of the op-
erating system on the developer’s workstation into the \Release directory of the
device .

File systems can be loaded by using two methods:1 2

n Automatically by the Storage Manager at system startup .

n By responding to a request while mounting a Storage Manager .

1 It is sufficient to set the PRJ_ENABLE_FSMOUNTASROOT environment variable in order for the file system to be
mounted into RAM as \Object Store, instead of the root . It is also necessary to set one of the two variables
(PRJ_BOOTDEVICE_ATAPI or PRJ_BOOTDEVICE_MSFLASH) depending on whether the file system of what type of
media (disk or flash) is going to be mounted as a root system instead of a RAM file system .

2 Particularly, this provides the capability to implement the file system’s RAM encryption by using the file system’s
filter .

 Device File System 189

The settings for automatically loaded file systems are stored as sub keys of the HKEY_LOCAL_
MACHINE\System\StorageManager\AutoLoad key, as shown in Figure 8–19 .

FIguRE 8–19 Sub keys for configuring automatically loaded file systems

The type of a file system that is mounted by request is determined by Partition Manager
according to the type of the mounted partition . The settings for mapping the partition
identifier to the file system are located in the registry key HKEY_LOCAL_MACHINE\System\
StorageManager\PartitionTable, as shown in Figure 8–20 .

FIguRE 8–20 Settings for mapping the partition identifier to the file system

The default file system settings are located in the registry keys that use the following naming
convention: HKEY_LOCAL_MACHINE\System\StorageManager\<File_System_Name> .

These settings can be redefined or added to for a specific media profile in the regis-
try keys that have the following naming convention: HKEY_LOCAL_MACHINE\System\
StorageManager\Profiles\<Media_Profile_Name>\<File_System_Name>.

Windows Embedded CE 6 .0 file systems support filters that are implemented as special librar-
ies that provide a predefined set of functions . A filter can be registered on the file system
level; that way, it will be loaded for any media on which the specified file system will be

190 Chapter 8 Building Devices

mounted . If the filter is registered on the media profile and file system level, the filter will be
raised only when the file system is loaded for the media specified in the profile . The filter’s
operations are transparent to the rest of the system and applications .

Figure 8–21 provides an example of file system filter settings from the Common .reg file that
is open in the registry’s graphic editor of Visual Studio .

FIguRE 8–21 File system filter settings from the Common .reg file

The upper rectangle shows registration of a filter for the file system (the registration settings
are shown on the right-hand side) . This filter will be loaded for all media that FATFS file sys-
tem (classic FAT) will be mounted for . The lower rectangle shows registration of two filters:
one for HDProfile and another for the FATFS file system; these filters will be loaded only
when the hard disk with a FAT file system will be mounted .

Windows Embedded CE includes several additional services for the file subsystem:

n Caching .

n Encryption .

n Replication .

Windows Embedded CE operating system includes two types of caching services for the file
system:

n File caching .

n Disk caching .

 Device File System 191

File caching is implemented as a file system filter (file system caching manager) . It can work
with any file system, it does not require changes to the file system implementation, and it
caches file data .

Disk caching is implemented as an auxiliary library . To use this service, the file system driver
must use this library in its implementation . Disk caching is usually used for caching file sys-
tem metadata . FATFS, TFAT and exFAT files systems can be configured to use disk caching .

Figure 8–22 provides an example of caching settings for FATFS file system from the Common .
reg file that is open in the registry’s graphic editor of Visual Studio .

FIguRE 8–22 Caching settings for FATFS file system

The upper rectangle shows the CacheDLL settings of disk caching for the FATFS file system
– diskcache .dll . This library is available in Shared Sources and is located in the \PRIVATE\
WINCEOS\COREOS\STORAGE\DISKCACHE\ directory . The lower rectangle shows the registry
key that contains the settings for file caching for the FATFS file system implemented as a file
system filter cachefilt .dll (see previous figure) . This library is available in Shared Sources and is
located in the \PRIVATE\WINCEOS\COREOS\FSD\CACHEFILT\ directory .

192 Chapter 8 Building Devices

Windows Embedded CE includes a mechanism for encrypting file system data . This mecha-
nism is implemented as a file system filter named encfilt .dll . This filter is registered to the file
system and a media profile the same way as any other file system filter that is shipped as a
source code . Its implementation is located in the \PUBLIC\COMMON\OAK\DRIVERS\FSD\
ENCFILT\ directory .

When building a device, the developer must choose one of two options of the internal file
system (also see Figure 8–23):

n ROM-only file system .

n RAM and ROM file system .

FIguRE 8–23 Options of the internal file system

When choosing the ROM and RAM File System option, the content of ROM is mapped to the
\Windows directory, the file system (object store) is initialized in the memory in accordance
with the .dat file settings (see Chapter 4, “Build System”) . and it is mounted as a root file
system .

When choosing the ROM–only File System option, the content of ROM is mapped to the
\Windows directory and the file system is not created in the memory, but it still provides the
capability to mount the external file system a root file system .

A typical task while building a device is to ensure that the system state is saved between
cold boots . It means that you have to save registry files and registry settings that are created

 Device Registry 193

and/or modified while working with a device . A solution to this task is to mount an energy-
independent storage as a file system root and to use registry hive . In order to mount storage
as a root storage containing the registry, it is necessary to configure appropriate registry set-
tings by creating the values MountAsBootable and MountAsRoot of the DWORD type with
a value equal to 1 in the registry keys with of the following type: HKEY_LOCAL_MACHINE\
System\StorageManager\Profiles\<Media_Profile_Name> or HKEY_LOCAL_MACHINE\System\
StorageManager\Profiles\<Media_Profile_Name>\<File_System_Name> . The HKEY_LOCAL_
MACHINE\System\StorageManager\Profiles\<Media_Profile_Name> key determines the set-
tings for any file systems that will be mounted on the volumes of a specified media profile .
The HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\<Media_Profile_Name>\<File_
System_Name> key determines the settings for a specific file system that will be mounted on
the volumes of a specified media profile . This key’s settings predetermine the value specified
in the HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\< Media_Profile_Name>
key .

The settings required for implementing a hive-based registry is discussed in more detail in
the next chapter .

Device Registry
Similar to the desktop version of Windows, Windows Embedded CE saves the settings of the
operating system, applications, and drivers in the system registry . The Windows CE registry is
organized similar to the desktop operating system registry, and it has the following four root
entries:

HKEY_CLASSES_ROOT.

HKEY_LOCAL_MACHINE.

HKEY_CURRENT_USER.

HKEY_USER.

The HKEY_CLASSES_ROOT hive contains the settings related to the processing of file exten-
sions and the COM subsystem . The HKEY_LOCAL_MACHINE hive contains the system settings
as well as the settings for the drivers and applications of the system as a whole . The HKEY_
CURRENT_USER hive contains the current user settings, which is actually a reference to a cor-
responding sub key of the HKEY_USER hive . The HKEY_USER contains sub keys that represent
settings for all users, including a default user .

In order to work with the registry, you can use an API set similar to the one available with the
desktop version . The API functions are listed in Table 8–8 .

194 Chapter 8 Building Devices

TABlE 8–8 API functions for working with the registry.

Function Purpose

ReadGenericData Reads the system password from the registry .

RegCloseKey Closes a handle of the registry key .

RegCopyFile Saves a copy of the current registry in the memory to a specified file .

RegCreateKeyEx Creates a specified registry key .

RegDeleteKey Deletes a specified registry key and all of its sub keys .

RegDeleteValue Deletes a specified value from a given key .

RegEnumKeyEx Enumerates sub keys of a given registry key . Returns one key for each
call . When there are no more keys, it returns ERROR_NO_MORE_ITEMS .

RegEnumValue Enumerates values of a specified registry key . Returns one key for each
call . When there are no more keys, it returns ERROR_NO_MORE_ITEMS .

RegFlushKey Flushes all changes to a specified key, its sub keys, and values into the
registry .

RegOpenKeyEx Opens a given registry key .

RegQueryInfoKey Requests information about a specified registry key .

RegQueryValueEx Requests type and value of a specified registry key .

RegSetValueEx Sets a given value for a specified registry key .

WriteGenericData Writes the system password from the registry .

Windows Embedded CE supports two registry types:

n Hive-based .

n RAM-based .

By default, Windows Embedded CE 6 .0 uses a hive–based registry . A hive–based registry
saves registry data as files (hives) that can be located in any supported file system .

A hived–based registry has the following characteristics:

n It supports a multi-user configuration .

n It provides the capability to save the registry settings between the device cold boots .

n It is divided into three parts .

o System hive (System .hv, Default .hv) .

o User hive (User .hv) .

o Boot hive (Boot .hv) .

 Device Registry 195

The name and location of the system hive is determined by the SystemHive registry value of
the HKEY_LOCAL_MACHINE\init\BootVars key . A catalog for defining user directories with
user hives is specified in the ProfileDir registry value of the HKEY_LOCAL_MACHINE\init\
BootVars registry key .

Boot .hv is the boot hive that is stored in the ROM . Default .hv is the system hive that is kept in
the ROM . The system hive stored on the media saves only the changes related to the registry
hive stored in the ROM . The user hive has a similar functionality .

During the first boot, registry hive files are automatically created in the media device . The
media–based registry hive files are bound to the registry from the image . When the image is
changed, during the first boot, the media–based registry hive files will be created anew and
the prior files will be removed .

Figure 8–24 shows the settings for the hive–based registry’s location as they appear in the
Common .reg file that is open in the Visual Studio graphical registry editor .

FIguRE 8–24 Settings for the hive–based registry’s location

In order to configure a hive–based registry, it is necessary to perform the following actions:

 1. Select a catalog item that includes support for a hive–based registry .

 2. Select catalog items that include support for the media device and the file system
where the registry files are going to be saved (Storage Manager, FAT File System,
Device Manager, etc .) .

 3. Make sure that settings for all drivers that are required for starting the media device
with a file system in the registry settings files are enclosed by special markers:

HIVE BOOT SECTION <settings for required drivers>;END HIVE BOOT SECTION .

 4. Set the load flag for the first stage of the device launch (0x1000) for all the drivers that
are needed to start a media device with a file system on it .

196 Chapter 8 Building Devices

 6. Configure the desired settings for the location of the system hive and user hive:
[HKEY_LOCAL_MACHINE\init\BootVars]

“SystemHive” = “<full_path_to_the_system_hive_file>”

“ProfileDir” = “<path_to_the catalog_for_user_directories>”

 7. The paths do not include the name of the directory under which the media device is
mounted . Those paths are specified relative to the directory of the mounted media,
such as “MyRegistry\system .hv” and “UserProfiles” .

 8. Configure the load stage of the Storage Manager and the Device Manager by using the
following key and the flags shown in Table 8–9:

[HKEY_LOCAL_MACHINE\init\BootVars]

“Flags” = dword:<flag_value> .

 9. The flags are combined with a logical OR operator . Usually, the ‘3’ value is used by the
hive–based registry, which means that the registry will be saved to the mounted media
that requires a block driver .

TABlE 8–9 load stage flags.

Flag Value Description

0x0001 Storage manager is launched during the first stage of the system
start for the hive–based registry .

0x0002 Device Manager is launched during the first stage of the system
start for the hive–based registry .

0x0004 Storage manager is launched during the first stage of the system
start for the registry in ROM, such as when it is stored in BinFS on
an external media device .

0x0008 Device Manager is launched during the first stage of the system
start for the registry in ROM, such as when it is stored in BinFS on
an external media device .

 10. Set the load flag for the corresponding media profile for the selected file system:
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\<Media_Profile_Name>\
<File_System_Name>]

“MountAsBoot”=dword:1

The registry settings that have to do with the location of hive registry files and the stages of
loading the storage manager and driver manager are usually stored in the Project .reg file .
The presence of HIVE BOOT SECTION markers needs to be verified in the Platform .reg and,
possibly, Common .reg files .

By default, changes in the registry are written to the media while the device goes to suspend
state . If needed, you can call the RegFlushKey function directly in order for the changes to be

 Device Databases 197

saved to a registry hive file on the media . You can also set an additional environment build
variable PRJ_ENABLE_REGFLUSH_THREAD, which will add a thread to the system—a thread
that will periodically flush the registry changes to the media .

Usually, in order to mount a media device, it is necessary to have an appropriate block driver
(Promise Controller ATAPI driver, Serial ATA, Intel StrataFlash NOR Driver, etc .) present in the
image; the Device Manager is necessary in order to load this driver; the storage manager, the
partition driver, and the file system driver are necessary in order to mount the volume and its
file system above the block media .

Also, the operating system provides the capability to keep a hive–based registry in the mem-
ory . This mechanism is designed for use with energy-independent memory, such as SRAM or
similar kinds; however, it can be used with a memory region allocated in the Config .bib file .

A RAM–based registry keeps the registry data in an object store . Therefore, during a cold
boot the data is lost . If, in the case of a RAM–based registry, there is a requirement that the
registry data is kept during a cold boot, it is necessary to either ensure that RAM has an in-
dependent power source, or make sure to save the registry data to an energy-independent
media when the device goes off and then restore it after a cold boot . Windows Embedded
CE provides a necessary infrastructure for that process .

Device Databases
Often times, a built-in application needs to have a capability to store structured data . In or-
der to do that, it is necessary to have a fast and compact database that is well integrated with
the operating system . Windows Embedded CE includes two types of databases:

n CEDB .

n EDB .

CEDB consists of records that have several properties . The properties are determined on the
database level . Records are stored in the database; the database, in turn, is stored in a vol-
ume that can contain several databases .

CEDB has the following characteristics:

n It is a single-user database .

n Every single operation is atomic .

n Maximum database volume size of 16 MB .

n Maximum record size of 128 KB .

n Does not support named properties .

n No restrictions on the number of properties per database .

198 Chapter 8 Building Devices

n Does not support password-protection .

EDB database is a new database format for Windows Embedded CE . Just like CEDB database,
it has the <property>-<field>-<database>-<volume> architecture .

The database is implemented based on a minimal version of the SQL Server Compact engine
and provides the following capabilities:

n Support for multiple users .

n Support for transactions .

n Maximum database volume size of 64 MB .

n Improved productivity .

n A maximum record size of 8 KB, not counting the thread data .

n Supports named properties .

n A maximum number of properties in a database is 1024 .

n Supports password protection .

Support for CEDB is retained for compatibility with prior versions of the operating system . It
is recommended that EDB is used with the new projects or, if it doesn’t provide enough ca-
pabilities, an appropriate version of SQL Server Compact .

The API set for CEDB and EDB does not contain any similarities in the desktop version . You
can receive more information in the product documentation3 .

Device Plug and Play Messaging System
Windows Embedded CE has a subsystem that is similar to the PnP messaging system of a
desktop operating system . When the drivers are loaded, it can provide the system with the
information about the classes supported by the device by using either a registry setting
(IClass) or by calling the AdvertiseInterface() function directly . A device class is basically a
predefined set of functionality implemented by the device .

For instance, DEVCLASS_STREAM_GUID is a regular stream interface driver and DEVCLASS_
CAMERA_GUID is a camera driver .

A messaging subsystem is implemented as part of the Device Manager subsystem . Their in-
teraction is shown in Figure 8–25 .

3 Windows Embedded CE Features/File Systems and Storage Management/Databases and Windows Embedded
CE Features/File Systems and Storage Management/File Systems and Storage Management Reference/Database
Reference

 Device System Shell 199

Application or Driver

Device Manager

Driver

Point-to-point Message
Queue RequestDeviceNotifications()

IClass
AdvertiseInterface()

Registers

Notifications

Creates

FIguRE 8–25 Plug and Play messaging system

Any driver or an application can be registered to receive a notification about a device that
implements a certain class being connected or disconnected . It enables you, among other
things, to implement a system that supports an auto-start of applications from external me-
dia when they are mounted .

An API set used for working with the notification subsystem is shown in Table 8–10 .

TABlE 8–10 API for working with the Plug and Play notification system.

Function Purpose

RequestDeviceNotifications Requests a receipt of notifications from the Device Manager related
to connecting and disconnecting devices that implement functionality
of a certain device class (IClass, AdvertiseInterface) .

StopDeviceNotifications Stops the previously requested Device Manager notifications about
devices being connected or disconnected .

Using this system enables you to create drivers and applications that start automatically or
that launch a certain procedure when a predefined device type appears in the system . For
instance, it applies to automatic scanning of all external mounted file systems by anti-virus
software when they are connected or starting a navigation program when connecting a GPS
device .

Device System Shell
A typical task that needs to be performed while building a device is to set up one’s own ap-
plication as a system shell . For Windows Embedded CE, replacing the shell only means speci-
fying one’s own program in the auto-start registry key HKEY_LOCAL_MACHINE\Init and, if

200 Chapter 8 Building Devices

needed, masking or removing the shell auto-start registry key from the files provided in the
development tools .

Please note that the standard shell (explorer .exe) provides the system with an additional API
(Shell API); if the program uses it, then it can operate only above the standard shell . In that
case, a program label (see the section below titled, “Creating File Shortcuts in the Device”)
can be placed into a standard shell auto-start folder (\Windows\StartUp), and the custom
shell’s position can be set on top of all windows, which previously hid the task panel .

Keep in mind that the standard shell auto-start folder is not automatically created when the
image with an added standard shell is built .

Adding Files to the Device Image
Integration of third-party software, including drivers, is one of the most typical tasks while
building a device . In spite of its perceived complexity, this task is relatively straightforward to
perform .

In order to include a file into the system image, it is necessary that, prior to the Makeimg
stage, the image build in the release directory has a binary image builder (.bib) file, which
contains entries that appropriately include the required files in the image .

It can be the Project .bib file or a separate newly-created file . Copying the Project .bib into a
release directory will occur automatically . When a separate (one’s own) file is used, it is neces-
sary to ensure that it is copied into the release directory before the Makeimg stage . It can be
done by using Custom Build Action from the OS design settings . This task can also be per-
formed by first launching the image build without the Makeimg stage, manually copying the
required files—including the configuration files—into the release directory as the next step,
and then launching the Makeimg stage .

The format of the required entries in the .bib file is shown below:

<NameOfFileInTheImage> <FilePathOnDisk>\<FileNameOnDisk> <ROMregion> <FileProperties>

Note that these entries should be placed in the appropriate section of .bib file (FILES or
MODULES) . For example:

FILES

File.txt c:\MyFiles\File.txt NK SH

This example is not useful because it requires configuration data being passed to someone
else, which requires the creation of an additional folder tree for saving the files included in
the image .

 Creating File Shortcuts in the Device 201

It would be more useful to find a way to copy all necessary files into the release directory be-
fore the MAKEIMG stage of the image build; in which case the .bib file entry in our example
will look as follows:

FILES

File.txt $(_FLATRELEASEDIR)\File.txt NK SH

The most convenient method of copying that enables you to keep the files in the same loca-
tion and to conveniently share them and their configuration is to create a component or a
project that contains all the necessary files including the configuration files . In this case, the
copying of files can be done by using standard and accessible mechanisms for copying ad-
ditional files into the release directory (POSTLINK_PASS_CMD)4 .

Creating File Shortcuts in the Device
When a RAM–based file system is used, the initialized DAT files determine the hierarchy of
directories and files . Copying is done when the hierarchy is initialized . Therefore, the same
files are located in the \Windows directory where ROM is mapped to and in the memory
where they are copied when a file system is initialized in the memory .

The use of file shortcuts instead of copying the actual files enables you to save the memory
space when the memory based file system is used . When the end device is created, you can
add the necessary shortcuts to the desktop and to the menu ahead of time to make them
more accessible for the end user .

For example, in order to automatically launch a program when a standard shell is used, you
can place its label into the auto-start folder \Windows\StartUp\ .

A label in Windows Embedded CE is represented by an .lnk file of a predefined format .

<NumberOfASCIISymbolsOfACommandAfterAPoundSymbol>#<CommandExecutedWhenYouClickTheLabel>

For example:

17#\Windows\calc.exe

33#\Windows\QuartaProg.exe Top Shell

Adding the label file into the image is done the same way as for all other files .

4 Mike Hall (Microsoft) wrote a useful utility named CEFileWiz that creates all the necessary configuration files for
including files into the image . The author provides regular updates to this utility . To download it, visit his blog at:
http://blogs .msdn .com/mikehall/ (listed under Interesting Tools in the left-hand side of the page) .

 203

Chapter 9

Application Development
This chapter covers the differences between native and managed code, choosing when
to create an operating system (OS) design subproject or a separately developed project,
how to prepare for application development, making device connections, and application
 debugging approaches . For detailed information about native code application development
for Windows Embedded CE, see Douglas Boling’s book, “Programming Windows Embedded
CE 6 .0 Developer Reference, 4th Edition,” and for more information about managed code
application development, see the book of Andy Wigley, Daniel Moth, and Peter Foot,
“Microsoft Mobile Development Handbook .” Alternatively, you can use the MSDN Web site
to find documentation, code samples, articles, virtual labs, and Web casts .

You can build applications for Windows Embedded CE by using native code or managed
code . Native code applications can be built as subprojects of the OS design, or as individual
projects . When building projects by using native code separately from the OS design, the
first step is to build an OS design, and later build applications for it . After that, an SDK should
be created and installed with the development tools . Managed code applications can be built
only as separate applications . However, as opposed to native code applications, managed
code applications actually do not require an SDK to be installed with the development tools,
and instead require the execution environment of the device .

native Code and Managed Code
Native (unmanaged) code is code written in C/C++ or ASM and compiled on a development
workstation to produce binary code that is native to the device processor . Applications built
in native code do not require additional subsystems as part of the device in order to run .
However, applications must be built for each supported processor type .

Managed code is code written in C#/VB .NET by using the .NET Compact Framework and
compiled on a development workstation to platform-independent Intermediate Language
(IL) . The .NET Compact Framework Base Class Libraries (BCL) provide an application
 programming interface (API) for managed applications . The run-time Execution Engine (EE)
together with the BCL are called the Common Language Runtime (CLR) and provide execu-
tion support for managed applications on a device . Managed code is compiled to binary
code that is native to the device processor by CLR on a first call . This process is called Just-In-
Time (JIT) compilation . Applications built in managed code require the CLR subsystem as part
of the device in order to run . An application can be built once and work for all supported
processor types .

204 Chapter 9 Application Development

Figure 9-1 illustrates native and managed code application architectures on a device .

Common Language Runtime

.NET Compact Framework

Base Class Libraries

.NET Compact Framework
Run-time Execution Engine

Native Instructions
for Execution

Native Application

Managed Application

Windows Embedded CE

Native Code

Managed Code

Device

Low-level Functionality
System API

COM
Drivers

Servers/Services

Uses

Execution

Just-in-time Compilation

Compile IL Code to Machine Code

Platform Interaction

COM Interop
P/Invoke

FIguRE 9–1 Native and managed application code architectures on a device

Native code applications have the fullest possible access to the system, but writing native
code applications is a more complicated task than writing managed code applications, es-
pecially if an application interacts with Web Services, Windows Communication Foundation,
and so on . Not all system features that are directly accessible from native code applications
are accessible from managed code applications, but this situation has been improving in the
 .NET Compact Framework with each release . Also, the .NET Compact Framework1 provides
Platform Invoke (P/Invoke) service and COM interoperability (COM Interop) . P/Invoke is used
to call native code dynamic link libraries (DLLs), and COM Interop is used to interact with
COM objects .

Table 9–1 summarizes native and a managed code from a developer’s perspective .

1 .NET Compact Framework 2 .0 and later .

 OS Design Subprojects and Separate Projects 205

TABlE 9–1 native and managed code comparison.

Native Code Managed Code

Compiled to machine code . Compiled to Intermediate Language code .

At least recompilation is required to
support different CPU architectures .

No recompilation required for different supported
CPU architectures .

No need for additional infrastructure
to run on device .

Needs Common Language Runtime on a device to
run .

Maximum possible access to system API
and services .

Access to services and API supported by the
 .NET Compact Framework .

P/Invoke to access a platform API and COM
Interop to interact with COM objects .

Access to system API and services requires
additional work or may be impossible .

Full supports of COM and ActiveX
 development .

Managed components can be exposed as COM
components with some limitations .

Can use Microsoft Foundation Classes,
Active Template Library, Windows Template
Library, and Standard Template Library .

Uses Base Class Libraries . Some third-party libraries
are available .

Can develop by using the following tools:

Visual Studio 2005 Service Pack 1, Visual
Studio 2008 .

Can develop by using the following tools:
Visual Studio 2005 Service Pack 1 with appropriate
 .NET Compact Framework update (see Chapter 2)
for .NET Compact Framework 2 .0, and Visual Studio
2008 for .NET Compact Framework 2 .0 and 3 .5

A developer should consider using native or development code depending on the required
development tasks and keeping in mind the considerations mentioned above . . Note that
some system code can’t be managed, including OAL, drivers and services .

OS Design Subprojects and Separate Projects
The easiest way to develop a device application is to build it as a subproject along with the
OS design . The only suitable toolset for this purpose is Visual Studio 2005 with the Service
Pack 1 with Platform Builder for CE 6 .0 add-on installed .

When debugging an OS design subproject, you can debug at the system level if you have
the Kernel Debugger included in the OS design . An OS design subproject can be automati-
cally included in the produced run-time image . These OS design subprojects are useful for
building system services, drivers, or for any kind of system-level development . Note that an
OS design subproject can be only native; all managed code development should be done as
separate projects .

206 Chapter 9 Application Development

A separate project can be used for all non-system development, especially when a developer
needs to use auxiliary libraries such as Microsoft Foundation Classes, Active Template Library,
Windows Template Library, Standard Template Library, and others . It is useful to use separate
projects to develop COM, ActiveX, business applications, network applications, and so on .

To build an application using native code separately from the OS design, it is necessary to
create an SDK . Then, Visual Studio 2005 with Service Pack 1 and Visual Studio 2008 can be
used to develop applications .

Table 9–2 compares OS design projects and separate projects from a developer’s perspective .

TABlE 9–2 Comparison of OS design subprojects and separate projects.

OS Design Subproject Separate projects

Only native code development . Native and managed code development .

Can debug down to the system level . Cannot debug the OS .

Even using standard Microsoft auxiliary
 libraries may require additional work .

Seamless support for auxiliary libraries such as
Microsoft Foundation Classes, Active Template
Library, Windows Template Library, and Standard
Template Library .

Note that auxiliary libraries should be included
manually into an OS run-time image if necessary .

Seamless drivers and services development . Practically impossible to develop drivers .

Can automatically be included in an OS
 run-time image .

Should be included into an OS run-time image
manually .

Can develop by using the following tools:
Visual Studio 2005 Service Pack 1 with
Platform Builder for Windows Embedded CE
6 .0 Service Pack 1 .

Can develop by using the following tools:

Visual Studio 2005 Service Pack 1 and
Visual Studio 2008 .

A developer should consider creating OS design subprojects or separate projects keep-
ing in mind the differences discussed above . Some application types cannot be developed
 separately, such as drivers and other hardware-assisted services . These application types are
always OS design subprojects . On the other hand, managed applications cannot be
OS design subprojects .

 Building Applications as OS Design Subprojects 207

Building Applications as OS Design Subprojects
To add a subproject to an existing OS design, complete the following steps .

 1. From the main menu in Visual Studio, select Project, and then Add New Subproject .
Alternatively, in the menu of the Subprojects node in Solution Explorer, select Add New
Subproject .

 2. An Add New Subproject Wizard dialog box appears, as shown in Figure 9–2 .

FIguRE 9–2 Add New Subproject Wizard dialog box—start screen

 3. Select a subproject type, name, and location . Click Next .

 4. A screen appears prompting you to select the desired application type . Select the ap-
plication type to create and click Finish, as shown in Figure 9–3 .

208 Chapter 9 Application Development

FIguRE 9–3 Add New Subproject Wizard—application type selection

 5. This creates a new OS design subproject, as shown in Figure 9–4 .

FIguRE 9–4 Operating system design subproject

 Building Applications as Separate Projects 209

You can debug a subproject by using standard Visual Studio and Platform Builder capabilities
(see Chapter 2 for more details) . For OS design subprojects, you can debug down to the sys-
tem level if you include Kernel Debugger in the OS design, whereas it is impossible to debug
at the system level for projects that are developed separately .

Building Applications as Separate Projects

Environment Preparation for Building
Native Code Applications
To build a native code application as a separate project, a developer needs to create an SDK
and install it in the appropriate development tools . In order to create an SDK, it is necessary
to first build the OS image without support for kernel debugging and KITL . To create a new
SDK, follow these steps:

 1. From the main menu in Visual Studio, select Project, and then select Add New SDK . Or,
in the menu of the SDK node in Solution Explorer, select Add New SDK .

 2. An Add New SDK Wizard dialog box appears .

FIguRE 9–5 SDK property dialog

The left side of the dialog box shows SDK property groups, as shown in Figure 9-5 . By select-
ing each group, one by one, you can configure the required settings . When you are done
configuring the SDK settings, click Finish .

210 Chapter 9 Application Development

This creates a new OS design SDK with corresponding parameters, as shown in Figure 9–6 .

FIguRE 9–6 New SDK of an OS design

If the system image is built for the emulator, and if the emulator is going to be used for
building applications, it is necessary to configure the settings for the Emulation group . These
settings include RAM and screen resolution, as shown in Figure 9–7 .

FIguRE 9–7 SDK parameters

Visual Studio 2005 with Service Pack 1 and Visual Studio 2008 ship with exactly the emulator
version that includes a BSP with Platform Builder for CE 6 .0 image development tools .

 Building Applications as Separate Projects 211

After an SDK has been created and configured, it needs to be built . To launch an SDK build
process, select a required SDK in the SDK node of Solution Explorer, and in the context menu
(right-click SDK) select Build . A build process will be launched . When it is finished, an installa-
tion file <SDK_Name> .msi will be created in a directory specified earlier in the SDK settings .
This MSI installation file needs to be installed on the development computer that has Visual
Studio 2005 with Service Pack 1 or Visual Studio 2008 installed, and on which you are plan-
ning to build applications for a designated device .

After an SDK has been installed, in the target devices of the development tools, there will be
an option to select a device named <SDK_Name> as a target when building a new project in
native code .

Note that the previous version of the operating system contained a Microsoft Foundation
Classes (MFC) component to be included in the OS design . The new version does not include
such a component, and therefore MFC support should be added manually by including
 distributable libraries shipped with Visual Studio 2005/2008 .

Environment Preparation for Building
Managed Code Applications
As opposed to native code applications, managed code applications do not require the SDK
to be installed to develop an application for a device . Managed-code applications require an
appropriate execution environment on the target device . For Windows Embedded CE 6 .0 it
could be .NET Compact Framework 2 .0 or .NET Compact Framework 3 .5 .

To develop managed code applications, a developer can use Visual Studio 2005 with Service
Pack 1 and Visual Studio 2008 . Visual Studio 2005 with Service Pack 1 enables a developer
to develop for .NET Compact Framework 2 .0, and Visual Studio 2008—for .NET Compact
Framework 2 .0 and .NET Compact Framework 3 .5 .

Although there is no need to create an SDK in order to develop and debug applications that
use managed code, when a device emulator is used, it is more practical to create and install
an SDK that supports development using managed code . In this case, the emulator launches
automatically when a developer starts debugging or deploying from Visual Studio . It is not
necessary to configure additional settings in order to connect to it and perform debugging;
all that is needed for deployment and debugging is to select a device named <SDK_Name>
Emulator .

When a new application project is created using managed code, in Visual Studio 2005 you
need to select Windows CE 5 .0, and in Visual Studio 2008 you need to select Windows CE .

212 Chapter 9 Application Development

Connecting to the Device to Deploy and Debug Applications
Before a developer can start deploying and debugging applications on a device, a connec-
tion between development tools (Visual Studio) and a device should be established .

When using an emulator as a target device and installing the appropriate SDK, there is no
need to configure additional connectivity settings for debugging . As mentioned above, the
emulator launches automatically when a developer starts debugging or deploying from
Visual Studio .

In the case of an actual physical device, additional steps may be required to connect to a
device . There are two possible scenarios that may require additional steps: either the device
includes ActiveSync support, or it does not . By using ActiveSync, you can establish a connec-
tion to the target device through a cradle, USB, Bluetooth, or infrared . ActiveSync performs
most of the work automatically . A developer only needs to provide additional settings de-
pending on the connection type . You should have ActiveSync installed on a development
workstation to establish a connection to a device with ActiveSync support .

Determining the Device IP Address
If a device does not have ActiveSync, a developer can debug applications over a TCP/IP con-
nection to the target device . To connect to a device by using a TCP/IP connection, perform
the following steps .

 1. Copy files from Program Files\Common Files\Microsoft Shared\CoreCon\1 .0\Target\
wce400\<Processor_Type> directory to the \Windows directory of the device, using any
available means . The simplest way to have the files on a device is to include those files
in the device’s run-time image (see Chapter 4 for more details) . Copy the following files:
ConmanClient2 .exe, CMaccept .exe, DbgTL .dll, and TcpConnectionA .dll .

 a. Launch ConmanClient2 .exe on the device .

 b. Launch CMaccept .exe on the device .

 c. The device will be available to connect to for three minutes .

 2. Determine the device IP address through any available means . Open the Device
Properties dialog box and specify the IP address in the TCP Connect Transport settings .

 a. On the Visual Studio Tools menu, click Options, then click Device Tools, and then
click Devices .

 b. Select Windows CE Device, and then click Properties .

 c. To the right of the Transport box, click Configure .

 d. In the Configure TCP/IP Transport dialog box, select Use specific IP address, and
then type the device IP address .

 e. Close the dialog boxes .

 Building Applications as Separate Projects 213

If a developer has a device with a user interface (UI) and standard shell, then the Control
Panel can be used to set the appropriates static IP address on the device . If a device does not
have a UI and standard shell, then a developer can include cmd .exe (Console Window cata-
log item) and ipconfig .exe (Network Utilities (IpConfig, Ping, Route) catalog item) into the
device run-time image, and then use those utilities to obtain the device IP address by run-
ning ipconfig at the command prompt . Note that cmd .exe I/O may be redirected to a serial
port, so even if a device does not have a UI, the IP address can be received . If none of the
described methods are applicable, then a developer can write an application as an OS design
subproject that returns the IP address of the device to the developer .

Debugging applications for Windows Embedded CE is practically the same as for desktop
applications . The only difference is that a developer should establish a connection to a device
before starting debugging . For more information about available debugging options, see
Chapter 2 .

 215

Chapter 10

Testing Operating System Images
Testing operating system (OS) images is an integral part of building devices . A careful
and regular testing of a device during the development stage reduces the overall costs of
 maintaining a device during its lifecycle and makes it possible to identify potential problems
and resolve them early .

Microsoft provides a wide selection of extensible testing tools included in Windows
Embedded CE Test Kit (CETK) .

Windows Embedded CE Test Kit
The CETK includes a collection of tests for a standard set of drivers and OAL, with the
 possibility to expand it by using special libraries . Additionally, the CETK includes utilities
that enable you to trap errors in the application code, capture screens of a launched device,
 perform stress-testing, and so on .

There are two scenarios for launching a test .

n By using the client-server architecture .

n Locally on the device .

A client-server testing scheme provides a convenient interface for selecting, configuring
and launching tests, as well as for viewing test results . This architecture provides additional
 advantages when it is necessary to test several devices . Local testing on the device is used
when a server is not available, when a connection to the server cannot be established, or
when overhead connection costs may significantly distort test results . In order to launch a
test process on a device, it is necessary to have all modules required for testing available .

The first method of testing requires the presence of the server side and the client side
components . The server-side process is launched on the workstation and is responsible for
managing test launches and logging their results . The client side process is launched on the
target device . It performs all necessary tests and sends the test results to the server side .

Figure 10–1 provides a general overview of CETK architecture .

216 Chapter 10 Testing Operating System Images

Developer Workstation Device

Log

Log

CE Tests

CETest.exe Clientside.exe

Test Libraries

Tux.exe

Kato.dll

FIguRE 10–1 CETK architecture

A server-side program (CETest .exe) is launched on a workstation or another machine that
has the CETK installed . It then connects to the client-side program (Clientside .exe), which
was previously launched on the target device if using TCP/IP . The process of selecting and
 configuring tests is done by using the CETest .exe graphic interface . When a test is launched,
all the necessary information is sent to the client . The client, on the other hand, launches the
Tux utility by specifying appropriate parameters for running a test . Test results are logged to
a file by using a mechanism implemented in Kato .dll .

Please note that to ensure that the client-server solution works, it is necessary to ensure
that the Clientside .exe module has been moved to and executed on the target device . If
either Kernel Independent Transport Layer (KITL) or ActiveSync are present in the image of
the target system, with the appropriate server-side settings, this should happen automati-
cally . Otherwise, the Clientside .exe module needs to be manually copied to the device and
launched by specifying connection parameters to the server in the command line or the
server-side connection configuration file .

When testing is launched directly on the device, the Clientside .exe module is not used .
Testing is done by launching the Tux utility by specifying testing parameters in the command
line . When testing is launched directly on the device, the Tux utility and the Tux libraries,
which contain all the required tests, need to be copied to the device .

 Testing the Image with Support for KITL Enabled 217

Testing the Image with Support for KITl Enabled
Let us review the process of testing the image with support for KITL in a client-server so-
lution . In order to launch the server part, from the Start menu, select Programs, select
Windows Embedded CE 6 .0, and then select Windows Embedded CE 6 .0 Test Kit . It is
 necessary to ensure that connection settings have been specified before testing can begin .
You can configure connections settings in the Device Connection dialog window, as shown in
Figure 10–2 . This dialog window can be opened by selecting Connection, and then selecting
Start Client in the main menu of the server-side window .

FIguRE 10–2 Device Connection dialog window

You can connect to the device by clicking the Connect button . The Connection Settings
 dialog box is accessible by clicking Settings . All settings are configured similar to remote
 utility settings . While the connection is established, the client program, Clientside .exe, is
 copied to the device and launches on it, as shown in Figure 10–3 .

218 Chapter 10 Testing Operating System Images

FIguRE 10–3 CETK client-side program

After a connection to the device has been established successfully and the image functional-
ity has been determined in the Windows Embedded CE Test Kit window, a sub item appears
in the Windows Embedded CE Test Kit Server folder . This sub-item corresponds to the
 connected device and has a list of available tests, as shown in Figure 10–4 .

FIguRE 10–4 Available tests

 Testing the Image with Support for KITL Enabled 219

Tests are grouped by a category folder, such as Audio, Display, Keyboard, and so on . The
folders marked with an exclamation icon (!) denote that the image does not have this
 functionality available for testing, or was not automatically detected on the device . In order
to select an individual test, open the folder group and check the tests that are required . To
modify testing parameters, right-click the test item and in the drop-down menu select Edit .
By using testing parameters, you can specify options such as the test length, content, and
so on .

After the test content and parameters have been established, you can launch a test by
selecting the Tests menu item, selecting Start/Stop tests, and then choosing the device on
which the tests will be launched, as shown in Figure 10–5 .

FIguRE 10–5 Specific test selection

The process of test execution is shown in the Windows Embedded CE Test Kit dialog box,
located next to the device item and each of the selected tests . Some tests, such as the
keyboard and mouse tests, require user interaction . You can stop a test by using the same
menu item as the one used for launching a test: Start/Stop tests .

To view test results, from the main menu, select Tests, View results, and then select the
target device . In order to view all test results, select View All Results . To view the results of a
particular test, select the menu item with the appropriate name, as shown in Figure 10–6 .

220 Chapter 10 Testing Operating System Images

FIguRE 10–6 Viewing specific test cases

The Test Result window is divided into three panels . The upper panel contains a list of com-
pleted tests . For each individual test there is a corresponding log file . The files containing the
results of testing are stored in the directory \Program Files\Microsoft Platform Builder\6 .00\
CEPB\WCETK\results . The central panel shows the results of individual sub-tests that are in-
cluded in the test item selected in the upper panel . Sub-tests may have following results:

n Passed .

n Failed .

n Skipped .

n Aborted .

The lower panel contains detailed information about each sub-test . This information can be
used to diagnose errors during test execution .

The Tux utility is responsible for test execution on the device . This utility can be launched
by the client module, Clientside .exe, or started manually for running tests without a server .
The tests shown in the server-side window of CETK contain the command-line parameters
for launching the Tux utility . The test configuration, logging parameters, and other necessary
information are passed to the Tux utility as command-line parameters that are listed in
Table 10–1 .

 Testing the Image with Support for KITL Enabled 221

TABlE 10–1 Tux utility parameters.

Parameter Description

-b Suspends execution after the Tux library is loaded . Used in debugging of test
libraries for setting breakpoints .

-e Disables exceptions processing .

-s <file-name> Performs a number of tests whose configuration settings are stored in the file
that is being passed .

-d <DLL library> Loads a specified Tux library to perform testing . This parameter can be reused
for loading several libraries .

-c<parameters> Passes specified parameters to a test Tux library . The parameters are passed to
the last library that was specified earlier by using the –d parameter .

-r<number> Sets the initial value for the random number generator . This parameter is
passed to the last library that was specified earlier by using the –d parameter,
which enables you to use different initial values of the random number genera-
tor for different libraries .

-x<range> Specifies what tests need to be run . For instance, x10, 12, and 15-20 . The
parameter can be reused for different libraries . The parameter applies to the
last library that was specified earlier .

-l Outputs a list of all available tests for the libraries specified in the –d parameter .

-lv This parameter is similar to –l, except that it outputs more detailed information .

-t <address> Specifies the name or IP address of the computer on which the server-side CETK
was launched . Using this switch with an empty IP address specifies the work-
station as the server . If the parameter is not specified, then tests are performed
locally without connecting to the server .

-n Launches tests in the kernel mode by using KTux .dll .

-h Outputs a list of parameters of the Tux .exe command line .

Parameters available while using Kato.dll logging.

-k <address> Specifies the name or the IP address of the computer that the test results will be
sent to . The use of this key with an empty address denotes that the workstation
is acting as a server . In addition, the log can be sent to the debugger (-o) or
entered into a file (-f) .

-m Performs logging in Extensible Markup Language (XML) format .

-o Outputs the results through the debugger .

-f <filename> Saves results to a file . By default, the results file is overwritten .

-a Adds results to an earlier created file specified in the <–f > parameter .

Parameters available while using Toolhelp.dll.

-z <delay> Stops execution of the Tux library after a specified number of seconds .

222 Chapter 10 Testing Operating System Images

The CETK architecture provides developers with an opportunity to create their own tests . To
create your own test libraries, you can use a template located in \Program Files\Microsoft
Platform Builder\6 .00\cepb\ wcetk\Tux\Tuxskel or, you can create a subproject of the OS
design, such as WCE Tux dynamic-link library . Examples of Tux library implementations are
located in the PRIVATE\TEST folder in the root of the build tree if you have installed the
 private sources during Platform Builder installation .

CETK utilities
By default, the utilities and auxiliary modules launched on the workstation are located in the
\Program Files\Microsoft Platform Builder\6 .00\cepb\wcetk\ddtk\desktop\directory . The
default location of the utilities and libraries launched on the device being tested is the
\Program Files\Microsoft Platform Builder\6 .00\ cepb\wcetk\ddtk\<CPU_FAMILY>\ folder .

Application Verifier
The Application Verifier utility is used for testing the stability of applications and for detect-
ing typical development errors . It enables you to detect and identify memory leaks, unclosed
descriptors, GDI object, as well as unclosed descriptors and GDI-objects, as well as to detect
some versions of heap corruption . This utility enables you to receive information that may be
difficult to obtain by using other methods . For instance, you may be able to examine a mod-
ule during the load process when a standard debugger may not be usable .

The Application Verifier utility uses specialized Shim libraries to collect information . The
 principle of Application Verifier’s operation via Shim libraries is shown in Figure 10–7 .

Application Shim Library

Call to Library Procedure

Library

Library Procedure

Intermediate Procedure

Standard Call

Call
through

Shim
Library

FIguRE 10–7 Application Verifier’s operation via Shim libraries

The Application Verifier utility enables two scenarios for its usage: remotely through CETK
and locally .

 CETK Utilities 223

Let us look at the scenario of launching Application Verifier through CETK . After CETest .exe
has been launched and a device connection has been established, as we described earlier, in
the server-side dialog box, right-click the node corresponding to the device, and in the drop-
down menu that appears, select Tools, and then select Application Verifier .

To ensure that this utility is working correctly, it is necessary to add, as a minimum, one mod-
ule to validate that it is connected to the device . Therefore, in the dialog box that appears, it
is necessary to click Close without connecting to the device, as shown in Figure 10–8 .

FIguRE 10–8 Application Verifier utility

Then add the module by clicking the Add button and specifying the module’s file name .

After the test module has been added to the Applications list, connect to the device by
 clicking the Connect button . Before testing begins, you can choose what errors the module
will be tested for . The software package is shipped with three Shim libraries, as follows:

n Heap Verifier checks for memory leaks and heap corruption .

n Handle leak Tracker checks for unclosed file descriptors, synchronization objects,
and so on .

n Shell Verifier determines unreleased GDI objects .

The module is checked each time it is launched regardless of whether it was launched from
the development and debugging tools or directly from the system’s image .

After the test module has finished its operation, a log file is created in the device file system
root . The log file can be loaded to the test station by clicking Get Logs . The utility is shipped

224 Chapter 10 Testing Operating System Images

with a convenient log file viewer that can be accessed by clicking View Exported Log, as
shown in Figure 10–9 .

FIguRE 10–9 Viewing an exported log

To launch the Application Verifier utility directly on the device, it is necessary to copy the
 following files to the device:

n AppVerif .exe .

n Shim_heap .dll .

n Shim_verifier .dll .

n Shim_hleak .dll .

n Shim_usergdi .dll .

n Verifhlp .dll .

Then launch the executable file AppVerif .exe . When the utility is launched directly on the de-
vice, the same options are available as when it is launched by using the server-side CETK . The
Application Verifier utility is extensible . The ShimGenUI .exe utility is used to create custom
Shim libraries, as shown in Figure 10–10 .

 CETK Utilities 225

FIguRE 10–10 Shim library generator

After the utility is launched, specify the initial library in the Original DLL field; its function
will be redirected to a Shim library . Next, from the list of all available functions of the
library shown on the left pane, select the functions you need into the right pane . Clicking the
Generate Code button will create initial template files . All that is left for the developer to do
is to develop the selected functions and to build a Shim library .

CPU Monitor
The CPU Monitor utility is used to view the processor load and the use of memory on the
device, as shown in Figure 10–11 . It is launched from the server-side window of the CETK .

FIguRE 10–11 CPU Monitor utility

After CETest .exe has been launched and a device connection has been established, as
described earlier, in the server-side dialog box, right-click the node corresponding to the
 device, and in the drop-down menu that appears, select Tools, and then select CPU Monitor .
A dialog window appears where you will need to select a device and click OK .

226 Chapter 10 Testing Operating System Images

Figure 10–12 shows what the CPU Monitor utility dialog window looks like after a connection
to the device has been made . The information collected with the help of the CPU Monitor
utility can be saved as a .TXT or an .XML file through the main utility’s menu by selecting File,
and then Save .

FIguRE 10–12 CPU Monitor utility dialog window

PerfToCsv
The PerfToCsv utility from the CETK test kit enables you to convert the log files of test re-
sults into comma-separated values (.csv) files so they can be viewed easily in a spreadsheet
 application, such as Microsoft Excel .

By default, this utility is located in the \Program Files\Microsoft Platform Builder\6 .00\cepb\
wcetk\ddtk\desktop folder and is launched from the command-line prompt by using the
 following syntax:

PerfToCsv.exe <initial_log_file> <converted_file>.csv

 CETK Utilities 227

Print Screen
The Print Screen utility is used to capture screen shots of the target CE device . The screen
shots are saved as .bmp files . As opposed to the Remote Zoom utility, Print Screen enables
you to do a screen capture without using a workstation .

In order to launch this utility, it needs to be manually copied to the device . Its executable file
is called prt_scrn .exe which is located in the \Program Files\Microsoft Platform Builder\6 .00\
cepb\wcetk\ddtk\<CPU_FAMILY> folder .

The Print Screen utility is launched on the device from the command-line prompt by using
the following syntax:

Prt_scrn [-d <number>] [-s <number1> <number2>] [-e <number1> <number2>] <screenshot_file_name>

Table 10–2 lists the parameters available with the Print Screen utility .

TABlE 10–2 Parameters available with the Print Screen utility.

Parameter Description

-d <number> Determines in what period of time in seconds after the utility is
launched, a screen capture needs to be made .

-s <number1> <number2> Sets horizontal and vertical coordinates of the upper left angle of a
rectangular screen section for taking a screen capture . A default value
is 0 0 .

-e < number1> <number2> Sets the position of the lower right angle of a rectangular screen
 section for taking a screen capture . A default value is the screen
 resolution (horizontal and vertical, respectively) minus 1 .

Windows Embedded CE Stress Tool
To perform device stress-testing, the CETK provides the Windows CE Stress Tool utility that
enables you to check the system’s stability when it experiences pressure on certain functional
blocks and when the system has insufficient resources .

The stress-testing utility utilizes the client-server architecture . This type of testing consists of
randomly launching modules from a test kit during a certain period of time . Each module
loads a certain functional block of the system . The utility supports the launch of its own test
modules that implement a given interface . Figure 10–13 shows the Windows Embedded CE
Stress Tool architecture .

228 Chapter 10 Testing Operating System Images

Developer Workstation Target Device

Log

KITL
TCP/IP

sServer.exe sClient.exe

Test Modules

FIguRE 10–13 Windows Embedded CE Stress Tool architecture

When stress testing is performed without the use of CETK, it is necessary to copy the client-
side files to the device manually . After that, you can launch the client-side and the server-side
programs by using the switches appropriate for the connection type . A connection between
a client and a server can be established through KITL or Transmission Control Protocol/
Internet Protocol (TCP/IP) by using the required command-line switches for the appropriate
connection type, as listed in Table 10–3 .

TABlE 10–3 Command-line parameters to start stress-testing utilities.

Connection Type Settings KITL TCP/IP

Clientside – sClient .exe AppKitl tcp <name or IP address of the server>:0

Server-side – sServer .exe -dev cetk -dev cetk –prot TCP

The server-side interface is shown in Figure 10–14 .

 CETK Utilities 229

FIguRE 10–14 Server-side interface

The stress-testing parameters listed in Table 10–4 are set in the Windows Embedded CE
Stress dialog window .

TABlE 10–4 Stress-testing parameters.

Parameter Description

Auto Launch Automatic launching of stress testing .

Auto Terminate Automatic termination of stress testing .

Concurrent Modules The number of concurrently launched modules .

Module Duration The duration of each module’s execution in minutes .

Module Mix A set of modules launched during the process of stress testing . If CETK is
selected, the program will launch all modules supported by the image .

Logging Logging parameters .

Test module failure
condition

Conditions that determine a test failure .

More Options Additional settings for stress testing .

230 Chapter 10 Testing Operating System Images

You can launch a stress test by clicking Launch . To terminate a stress test, click Terminate .
The server-side program waits for launched tests to end . On the device screen, the testing
process appears, as shown in Figure 10–15 .

FIguRE 10–15 Testing process display

The results and configuration settings of a completed stress test are saved to an XML file in
the \Program Files\Microsoft Platform Builder\6 .00\cepb\wcetk\ddtk\desktop\Windows CE
Stress\ directory .

 231

Access checking A check to verify that the
caller process has permissions to access
the buffer .

Application Logically grouped executable
code .

Board Support Package (BSP) A BSP is the
common name for all board hardware-
specific code . It typically consists of the
boot loader, the OEM adaptation layer
(OAL), and board-specific device drivers .

Catalog A container of components that
presents a selectable feature for an OS
design to the user .

Component Smallest OS functional compo-
nent that can be added to an OS design .

Device Manager Part of the system kernel
responsible for working with stream
interface drivers .

Embedded pointer Pointer that passes to
an API function in a data structure or
buffer .

Interrupt service routine (ISR) A small
subroutine that resides in the OEM ad-
aptation layer (OAL) . The ISR executes
in kernel mode and has direct access to
the hardware registers . Its sole job is to
determine what interrupt identifier to
return to the interrupt support handler .
Essentially, ISRs map physical interrupts
onto logical interrupts .

Interrupt service thread (IST) A thread
created by a device driver to wait on an
event .

IRQ (Interrupt Request) IRQ values are
associated in hardware with interrupts .
Each IRQ value can be associated with
one or more Interrupt Service Routines
(ISRs) that the system will run to process
the associated interrupt when it is
triggered .

Kernel Debugger The kernel debug-
ger integrates functionality required to
 configure a connection to a target device
and download a run-time image to the
target device . It allows the debugging
of the Operating System, drivers, and
applications .

Kernel Independent Transport layer

(KITl) The KITL is designed to provide an
easy way to support debugging services .

Kernel-Mode Driver A driver that runs in
the kernel’s memory space .

layered device driver A sample device
driver that comes with the Platform
Builder . It contains two layers: a model
device driver (MDD) layer and a plat-
form-dependent driver (PDD) layer .

Managed code Code written in C# or
VB .NET for .NET Compact Framework .

Marshaling A process to check the access
rights and validity of data for different
processes .

Model device driver (MDD) The platform-
neutral layer of a native device driver
supplied by Microsoft .

Glossary
The glossary includes important terms used in the book and their definitions .

232 Glossary

Module A subset of the Windows CE operat-
ing system . Windows CE is structured as
a collection of modules . Each module is
a self-contained subset of the Windows
CE operating system that can be used to
construct a customized operating system
for a particular device .

native code Code written in ASM/C/C++
that uses the Win32 API .

OEM adaptation layer (OAl) An OAL is
a layer of code that logically resides
 between the Windows Embedded CE
kernel and the hardware of your target
device . Physically, the OAL is linked with
the kernel libraries to create the kernel
executable file .

OS design A Platform Builder for Windows
Embedded CE6 R2 project that generates
a customized binary runtime image of the
Windows Embedded CE6 R2 operating
system

Platform Dependent Driver (PDD) The PDD
layer of a layered driver is the part that
interfaces directly with hardware and per-
forms any hardware-specific processing .

Pointer parameter Pointer that is passed to
an API function as a parameter .

Process A running application that con-
sists of a private virtual address space,
code, data, and other operating-system
resources, such as files, pipes, and syn-
chronization objects that are visible to the
process . A process also contains one or
more threads that run in the context of
the process .

Production Quality OAl (PQOAl) The
PQOAL is a standardized OAL structure
that simplifies and shortens the pro-
cess of developing an OAL . It provides
you with an improved level of OAL

 componentization through code librar-
ies, directory structures that support code
reuse, centralized configuration files, and
a consistent architecture across processor
families and hardware platforms .

Reflector service The service that enables
user-mode drivers to access the kernel
and hardware by performing requests on
their behalf .

Run-time image The binary file that will be
deployed on a hardware device . It also
contains the complete operating system
required files for applications and drivers .

Secure copy Local copy of a data buffer .

Stream interface driver A stream inter-
face driver is any driver that exposes the
stream interface functions, regardless
of the type of device controlled by the
 driver . All drivers other than the native
drivers managed by GWES export a
stream interface .

Synchronization primitive/object An
object that enables completion of
 synchronization tasks in a multithreaded
environment .

Synchronous access Access to the buffer at
the time of an API call .

Thread The smallest software unit that the
scheduler can manage on the Operating
System . There can be multiple threads in a
single driver or application .

user-mode drivers Drivers loaded in user
mode and all applications run in user
memory space . When they are in this
mode, drivers and applications do not
have direct access to hardware memory
and have restricted access to certain APIs
and the kernel .

 233

Building Solutions Using Windows
Embedded CE 6 .0 course

Course 2540N: Building Embedded Solutions
Using Windows CE 5.0

Windows Embedded CE blog, http://blogs .
msdn .com/ce_base/

Boling, Douglas . Programming Windows
Embedded CE 6.0 Developer Reference.
4th Edition . Microsoft Press, 2007 .

Wilson, Y . James, Aspi Havewala . Building
Powerful Platforms with Windows CE.
Addison-Wesley Professional, 2001 .

Murray, John . Inside Microsoft Windows CE
Microsoft Press, 1998 .

References

 235

Resources

Forums
n Russian-speaking forum dedicated to Microsoft embedded operating systems:

http://www .msembedded .ru/forum

Blogs
n Windows Embedded CE team blog: http://blogs .msdn .com/ce_base

n .NET Compact Framework team blog: http://blogs .msdn .com/netcfteam

n HopperX blog, dedicated to device issues: http://blogs .msdn .com/hopperx/

n Mike Hall blog, dedicated to Microsoft embedded operating systems:
http://blogs .msdn .com/mikehall/

n SQL Server Compact Edition team blog: http://blogs .msdn .com/
sqlservercompact/

Newsgroups
n microsoft .public .windowsce .platbuilder

n microsoft .public .windowsce

n microsoft .public .pocketpc .developer

n microsoft .public .windowsce .embedded

Books
n Boling, Douglas . Programming Windows Embedded 6.0 Developer Reference.

4th Edition . Microsoft Press, 2007 .

n Wilson Y ., James and Aspi Havewala . Building Powerful Platforms with
Windows CE . Addison-Wesley Professional, 2001 .

n Murray, John . Inside Microsoft Windows CE . Microsoft Press, 1998 .

 237

Symbol
$bus namespace, 140
$device namespace, 140
3COM 3C90X network card, 125
3RDPARTY subdirectory, 102
32-bit architecture, 78
802 .1, 8
 .bib files, 111

CONFIG section of, 112
execute in place (XIP) and, 113
MEMORY Section of, 112
MODULES attributes in, 114
MODULES section of, 113

 .cab files for installing programs,
74

CL environment variable, 105
 .dat files, 111, 115
 .db files, 111, 115
_DEPTREES environment variable,

105, 108
_FLATRELEASEDIR environment

variable, 105, 110
_ISVINCPATH variable, 176
 .lib files . See static libraries (.lib)
 .NET Compact Framework, 6, 8,

103, 203
 .obj files . See object files (.obj)
_OEMINCPATH variable, 176
_PLATFORMROO„S environment

variable, 105
_PROJECTROO„S environment

variable, 105
__PROJROOT variable, 176
_PUBLICROOT environment

variable, 105
 .reg files, 111, 115
__security_init_ cookie function,

162
/STACK linking parameter, 87
_TGTCPU environment variable,

105
_TGTPLAT environment variable,

105

_TGTPROJ environment variable,
105

__try/__except/__finally blocks,
155

_WINCEROOT environment
variable, 101, 105, 176

A
absolute binary format, 111
abstraction of hardware or virtual

device, 2, 127, 135
access checking, 151
ActivateDeviceEx function, 146,

148, 165
Active Server Pages (ASP), 9
ActiveSync, 8, 57, 216
Active Template Library (ATL), 8,

206
ActiveX, 206
ActivityTimers registry key, 184
adaptation of desktop

applications, 7
Add Device window, 51
Add New Subproject wizard

dialog box, 207
address fixup, 145
addressing of memory, 79
Advanced Build Commands

option, 45
Advanced Memory utility, 54
advantages of kernel-mode

drivers, 142
AdvertiseInterface function, 182,

198
alerts, 67
aliases and buffers, 152
allocating memory regions with

fine granularity, 84
AMD Am79C970 network card,

125
analysis of session data, 71
apicall .c file, 161

API, See application programming
interface (API)

application development,
203–213

application libraries, 75
application programming

interface (API), 7
Application Verifier utility, 222
architecture of device

drivers<$startrange>, 135
architecture of the Windows

Embedded CE Test Kit (CETK),
215

architecture of virtual memory, 78
architecture of Windows

Embedded CE, 75
ARM emulator, 8
ARM processor, 2, 121
ARMSetup function, 160
armtrap .s file, 161
Aruba Board, 121
ASM code, 203
ASP . See Active Server Pages (ASP)
Aspen Development Board, 121
assembler language, 160
asynchronous access to buffers,

152-153
AsynchronousBuffer_t class, 155
ATL8 directory, 102
ATL . See Active Template Library

(ATL)
ATM . See automated teller

machine (ATM)
Attach Device option, 48
attacks, 153
audio output, 183
Autoload registry key, 149, 189
automated teller machine

(ATM), 5
automatically launching

applications at the system
startup, 165, 177-179

automatically loading drivers
during system startup, 180

Index

238 automatic reset event

automatic reset event, 97
AUTOSIZE parameter, 112
Autos utility, 54
auxiliary debug files, 155
auxiliary functions for working

with partitions, 124
AYGShell API, 8

B
backlight driver, 183
backup and restore

system libraries and, 74
Base Class Libraries (BCL), 203
base operating system design,

170
Batch Build option, 45
batch files for the build process,

101
BCL . See Base Class Libraries (BCL)
BIB . See Binary Image Builder (BIB)
binary image (BIN), 74
Binary Image Builder (BIB), 111,

145, 200
Binary Rom Image File System

(BinFS), 9, 188
BinCompress .exe, 74
BinFS . See Binary Rom Image File

System (BinFS)
BinMod .exe, 74
BLCOMMON, 8, 124
Blddemo .bat file, 2, 101
Blddemo .bat –qbsp command,

109
block driver, 146
blocking threads, 94
Bluetooth, 8
Board Support Package (BSP), 2

CeSysgenPlatform .mak file and,
109

cloning a, 78, 173
components of a, 122
configuration files and, 122, 132
customizing a, 129
development requirements, 2
device development and, 168
directory structure of a, 122
drivers and, 122
examples of a, 121
FILES directory of a, 133

hardware interaction, 78
overview of, 121–133
Platform .reg file for a, 115
quality of a device and, 121
reducing the time to

build a, 130
self-developed, 171
source code of a, 123
Sysgen filtration for a, 109

Boot hive, 194
Boot .hv file, 165
boot loader, 121, 124

device development process
and, 168

implemention of a, 125
libraries for a, 124
serial port operations and, 125
Startup() function and, 125
startup sequence and, 159
tasks of a, 124

BootloaderMain() function, 125
BOOTLOADER subdirectory, 123
BOOTPART library, 124
BootPhase2 event, 164
BootVars registry key, 195
browse open windows of a device,

67
BSP . See Board Support Package

(BSP)
BSP_NOXXX environment

variables, 105
buffer marshaling API, 153
buffers, 87, 143, 151
Build All SDKs option, 45
Build and Sysgen option, 46
Build Current BSP and Subprojects

option, 46
Build .err file, 118
Build .exe, 110, 116
Build .log file, 118
Build menu items, 45
build order, 38
build process, 2

batch files for the, 101
Build .exe and, 116
build options and, 41
Buildrel errors during the, 118
command files for the, 2
custom build actions and, 43
errors during the, 118

Exclude from build option
and, 43

final stage of the, 110
general settings for the, 40
input files for the, 101
Makeimg errors during the, 119
Nmake utility and, 101
Post-Sysgen errors during the,

118
stages during the, 106
Sysgen errors during the, 118
variables used to control the, 41

BuildRel .bat file, 110
Buildrel . See Build Release

Directory (Buildrel)
Build Release Directory (Buildrel),

110
Buildrel errors, 118
BUILDREL_USE_COPY variable,

42, 110
Build Solution option, 45
build system

directory tree of the, 102
build system, 101–119
Build tracked events in RAM

setting, 42
build tree, 39
build type, 40
BuiltIn registry key, 148, 165
BuldRel .bat file, 106
bus architecture-specific

operations, 140
bus–based namespace, 140
bus enumerator (BusEnum .dll),

148
BusNumber registry parameter,

147

C
CabWiz .exe, 74
CacheDLL settings, 191
cachefilt .dll library, 191
caching manager, 191
caching of images designed for

flash memory, 126
caching of static memory, 80
caching services for the file

system, 190
Call Browser window, 33

 Copy Files to Release Directory option 239

CallCAP profiling, 71
Call Profiler utility, 48, 71

application performance
measuring by using, 71

CallCAP profiling and, 71
FastCAP profiling and, 71
required components for, 55
Sources file and, 71

Call Stack utility, 54
camera driver, 198
CandidateX registry

parameter, 148
capturing screenshots of the

target CE device, 227
car–based computers, 7
catalog hierarchy, 34, 102
Catalog Items View, 33, 36
CATALOG subdirectory, 103, 123
C/C++ code, 203
C# code, 203
CD File System (CDFS), 9, 188
CDFS . See CD File System (CDFS)
CDProfile registry key, 149
CE 1 .0 . See Microsoft Windows

CE 1 .0
CeAllocAsynchronousBuffer

function, 153-154
CeAllocDuplicateBuffer function,

154
CEAppCompat .exe, 74
CEBackup .exe, 74
CEBASE subdirectory, 103
CE .bib file, 111
Cebuild .bat file, 106
CeCallUserProc function, 142
CECE signature, 159
CeCloseCallerBuffer function,

153-154
CEDB database, 77, 82, 197
CEDebugX toolkit for multi-

threaded programming, 25
CE Debug Zones option, 48
CE_DRIVER_POWER_

MANAGEABLE_DISPLAY_
GUID, 183

CEFileWiz utility, 201
Cefilter .exe utility, 109
CeFlushAsynchronousBuffer

function, 154

CeFreeAsynchronousBuffer
function, 153-154

CeFreeDuplicateBuffer function,
154

CeGetThreadPriority function, 92
CeGetThreadQuantum function,

92
CeHeapCreate function, 86
CELLCORE subdirectory, 103
CELog .dll file, 42
CELog file conversion, 74
CeOpenCallerBufer function,

153-154
CEPC BSP, 121
CeRemoteHeapCreate

function, 86
CeRemoteHeapMapPointer

function, 86
CeSetThreadPriority function, 92
CeSetThreadQuantum

function, 92
CESH . See CE Shell (CESH)
CE Shell (CESH), 48, 171
CESH Startup server, 57
CESYSGEN directory, 123
CeSysgenPlatform .mak file, 109
CETest .exe . See server-side

program (CETest .exe)
CETK . See Windows Embedded CE

Test Kit (CETK)
charts, 67
CIFS . See Common Internet File

System (CIFS)
Class View, 33, 37
Clean Solution option, 45
Clean Sysgen option, 46
client-side program (Clientside .

exe), 216
clock, 128
Clone Board Support Package

dialog window, 173
Clone BSP option, 173
Clone Catalog Item option, 176
Cloning, 78, 131, 175
CloseHandle function, 96, 139
CloseMsgQueue function, 98
CLR . See Common Language

Runtime (CLR)
CMaccept .exe, 212
cmd .exe, 213

Code Definition window, 33, 38
codepages, 41
COFF files, 74
cold boot, 164, 192, 197
committed virtual memory, 79
Common .bib file, 111
Common Internet File System

(CIFS), 9
Common Language Runtime

(CLR), 203
common platform code, 129
COMMONPUBROOT variable, 176
Common .reg file, 115, 178, 183
COMMON subdirectory, 103, 123,

129-131
compatibility checks, 74
compiler

improvements of the, 10
run-time safety checks and, 10

componentized design, 6–7, 75
components of a Board Support

Package (BSP), 122
COMPRESS parameter, 113
compromised kernel-level driver,

142
COM subsystem, 193
conditional debug output, 155
Config .bib file, 111, 133
CONFIG section, 112, 159
configurable IISR procedure, 100
Configuration Manager option,

45, 105
Configure Windows CE Platform

Manager option, 56
ConmanClient2 .exe, 212
connectivity options, 48
Console Window catalog item,

213
consumer electronics, 7
consumer media device, 169
context of threads, 88
Control Panel, 213
control window of the target

device, 48
ConvertThreadToFiber

function, 93
Copy Files to Release Directory

After Build option, 46
Copy Files to Release Directory

option, 45, 110

240 copying errors

copying errors, 118
coredll .dll library, 75
core of the operating system, 75
Core Service Settings window, 50
costs of development, 5
CPU Monitor utility, 225
CreateDC function, 148
create directories on a device, 55
CreateEvent function, 97, 150
CreateFiber function, 93
CreateFileForMapping

function, 88
CreateFile function, 88
CreateFileMapping function, 88
CreateMsgQueue function, 98
CreateMUI .bat file, 74
CreateMutex function, 96
CreateProcess function, 92
CreateSemaphore function, 96
CreateStaticMapping

function, 143
CreateThread function, 87, 92
critical sections, 93, 95

functions for working with, 95
C run-time library, 151
Crystal CS8900A network card,

125
custom build action, 200
customizing a Board Support

Package (BSP), 129
custom Shim libraries, 224
CvrtBin .exe, 74, 111

D
database initialization file, 111,

115
databases, 197
data marshaling, 153
DATASYNC subdirectory, 103
DAT files, 201
dbgapi .h, 156
DBGPARAM structure, 156
DbgTL .dll library, 212
DCOM subdirectory, 103
DDI . See Device Driver

Interface (DDI)
DDKReg_GetIsrInfo function, 147,

150

DDKReg_GetWindowInfo
function, 147

DDSI . See Device Driver Service
Interface (DDSI)

DebugBreak macro, 157
Debug build mode, 105
DEBUGCHK macro, 157
debugging

conditional output for, 155
control window of the target

device for, 48
driver development and, 155
eXDI 2 .0 support, 25
hardware debugging

support, 42
kernel debugging support, 42
managed code and, 212
output method for, 52
postmortem, 10
subprojects and, 205
TCP/IP connections and, 212
transport subsystem for, 125
without interruptions by using

debug zones, 155
DEBUGLED macro, 157
Debug menu, 53

Memory submenu, 54
Windows submenu, 54

debug message options, 48, 52
DEBUGMSG macro, 157
DEBUGREGISTER macro, 156, 157
DEBUGZONE macro, 157
debug zones, 49, 155

macros for, 157
printf debugging and, 155
registering of, 156

DEC/Intel DC21140 network
card, 125

Default .fdf file, 111
Default .hv file, 195
default stack size, 87
default thread priority, 89
DeleteCriticalSection function, 95
Delete Device window, 52
DeleteFiber function, 93
DependXX registry parameter,

165, 177
design templates, 169

sub-items of, 169
desktop applications

adaptation and modification
of, 7

embedded application
development in comparison
to, 213

Detach Device option, 48
DEVCLASS_CAMERA_GUID, 198
DEVCLASS_STREAM_GUID, 198
devcore .c file, 164
development costs, 168
development tools for Windows

Embedded CE, 10
interface of, 32–54

development tools for Windows
Embedded CE, 11–74

DEVFLAGS_LOAD_AS_USERPROC
flag, 141

device–based namespace, 140
Device Connection dialog

window, 217
device context, 145
device controller, 98
device databases, 197
device development

Board Support Package (BSP)
accessibility and, 168

costs of, 5
image builds during, 171
KITL support and, 168
overview of, 167–201
planning phase during, 167
process for, 172
stages of, 167
traditional approach to, 167

device .dll library, 77
Device Driver Interface (DDI), 136
Device Driver Service Interface

(DDSI), 136
Device Emulator, 121, 210
DeviceIoControl function, 139
Device Manager, 77, 135, 138,

144, 164
device notification system, 199
DevicePowerNotify function, 186
device power state, 181
device prefix, 140
device properties, 57
device transports, 57
device type selection, 169
devmgr .dll library, 77

 ExitThread function 241

DHCP See Dynamic Host Con-
figuration Protocol (DHCP)

diagnosing potential problems, 10
digital media receiver, 169
Digital Rights Management, 9
Direct3D, 6
DirectDraw, 6
directory structure of a Board

Support Package (BSP), 122
DirectShow, 6
DIRECTX subdirectory, 103
Dirs files, 101, 116

Nmake utility and, 116
structure of, 116

Disassembly utility, 54
diskcache .dll library, 191
DisplayCandidates registry key,

148
DisplayDll registry parameter, 148
Dll registry parameter, 146
DLLs . See dynamic-link libraries

(DLLs)
DotnetV2 directory, 102
dpCurSettings parameter, 156
driver, 2

architecture, 135–157
auxiliary debug files for a, 155
BuiltIn registry key of a, 148
classification of a, 135
definition of a, 135
development, 149
device context and, 145
efficiency of a, 143
fault tolerance and, 78
file system, 138
group number of, 144
hybrid, 135
intermediate global positioning

system (GPS), 8
interrupts and, 149
kernel mode and, 77
kernel space and, 7
layered, 135
load parameters, 140
MDD/PDD architecture for, 136
Monolithic, 135
Native, 138
porting a, 137
release-quality, 6
reload a, 142

secondary display and loading
of, 148

service interface of a, 136
shared memory and, 151
stream, 135
stream interface functions and,

139
thread, 138
unique device functionality and,

137
user process, 7
worker bee of a, 139

driver directories, 138
driver infrastructure, 2, 135
DriverName registry parameter,

149
DRIVERS subdirectory, 123
dual monitors, 148
DumpBin .exe, 74
DuplicatedBuffer_t class, 155
DuplicateHandle function, 87
DVD Video API, 9
Dynamic Host Configuration

Protocol (DHCP), 124
dynamic-link libraries (DLLs), 7

virtual memory and, 78
dynamic mapping of virtual

memory, 80-81

E
EBOOT . See Ethernet boot loader

(EBOOT)
EBOOT library, 124
eboot loader, 122
eboot space, 42
EBOOT subdirectory, 123
EDB . See Enhanced Database

(EDB)
EE . See Execution Engine (EE)
embedded pointer, 151, 154
embedded systems

infrastructure solutions and, 6
initial stage of, 5
server solutions and, 6

embedded systems, 5–10
Enable eboot space in memory

setting, 42
Enable event tracking during boot

setting, 42

Enable hardware-assisted de-
bugging support setting, 42

Enable Kernel Debugger setting, 42
Enable KITL setting, 42
Enable profiling setting, 42
Enable ship build setting, 42
encfilt .dll library, 192
encryption, 188
energy-independent memory, 197
energy-independent storage, 193
Enhanced Database (EDB), 102, 198
EnterCriticalSection function, 95
enterprise terminal, 169
enterprise Web pad, 169
enumerating partitions, 149
environment variables

build process and, 2
build process and, 104–105
configuring of, 101
OS design and, 104

ERRORMSG macro, 157
errors during the build process, 118
establishing a connection

between the developer
workstation and the target
device, 57

ETHDBG library, 124
Ethernet boot loader (EBOOT), 124
Ethernet debugging libraries

(ETHDBG), 124
event collection, 42
event log, 164
events, 93, 96

functions for working with, 97
interrupt service thread (IST)

and, 150
exception errors, 80, 155
exception handling, 86
Exchange Server client, 8
Exclude from build option, 43
Exclude from image option, 44
eXDI 2 .0 hardware debugging

support, 25
execute in place (XIP), 82, 113
Execution Engine (EE), 203
execution monitoring, 48, 69
exFAT . See Extended File

Allocation Table (exFAT)
ExitProcess function, 92
ExitThread function, 92

242 explorer.exe

explorer .exe, 200
export files to a device, 55
exporting registry files, 65
Extended File Allocation Table

(exFAT), 9, 188
Extensible Markup Language

(XML), 8

F
FastCAP profiling, 71
FAT . See File Allocation Table (FAT)
FATFS registry key, 149
fault tolerance, 78, 143
Favorites folder, 34
Fibers, 88

characteristics of, 93
functions for working with, 93

FIFO . See First In, First Out (FIFO)
File Allocation Table (FAT), 9, 188
file-backed memory-mapped

files, 87
file namespaces, 139
FILES directory, 123, 133
file shortcuts, 201
filesys .dll library, 77, 115, 164
FileSys module, 149
file system, 187
File System Driver (FSD), 9, 138,

140
loading of a, 149
mounting media and, 149
overriding settings for a, 149
Storage Manager and, 149

file system filter manager, 77
file system manager, 77
file system types, 188
File Transfer Protocol (FTP), 9, 75
File Viewer utility, 48, 55
filter settings, 190
filters for the file system, 189
filtration of header files, 109
final stage of the build process,

110
First In, First Out (FIFO), 99
FIXUPVAR memory type, 112
Flags registry parameter, 146
flash memory, 42

auxiliary functions for, 124

caching of images designed
for, 126

flat 4 GB address space, 78
flushing of event logging to the

release directory, 42
Flush tracked events to release

directory setting, 42
FlushViewOfFile function, 88
Fmerge .exe, 110
Folder registry parameter, 187
forced rescheduling, 161
ForceDuplicate parameter, 154
fragmentation of heaps, 85
FreeIntChainHandler function,

100, 143, 150
free virtual memory, 79
FSD . See File System Driver (FSD)
fsdmgr .dll library, 77
FSReady event, 163
FTP . See File Transfer Protocol

(FTP)

g
gathering information about

processes, 63
GDIEX subdirectory, 103
Gear 2-Vr5500 Development Kit,

121
general system settings, 178
Generic Installable ISR (GIISR),

100, 151
GetCurrentFiber function, 93
GetCurrentProcess function, 92
GetCurrentProcessId function, 92
GetCurrentThread function, 92
GetCurrentThreadId function, 92
GetExitCodeProcess function, 92
GetExitCodeThread function, 92
GetFiberData function, 93
GetMsgQueueInfo function, 98
GetProcessHeap function, 86
GetThreadContext function, 92
GetThreadPriority function, 92
GIISR . See Generic Installable ISR

(GIISR)
Global Build Settings option, 45
Global Build Settings submenu, 46
global positioning system (GPS),

8, 199

GPS . See global positioning
system (GPS)

Graphics, Windowing, and Events
Subsystem (GWES), 77, 135

group number of drivers, 144
GWES . See Graphics, Windowing,

and Events Subsystem (GWES)
gwes .dll library, 77

H
Handle Leak Tracker shim library,

223
hard links, 42, 110
hardware debugging support,

25, 42
hardware-dependent part of the

operating system, 102
hardware-independent part of

the operating system, 102
hardware initialization, 124
hardware interaction, 78
hardware platform selection, 168
HDProfile registry key, 149, 187
header files, 109

Cefilter .exe utility and, 109
headless device version, 8
HeapAlloc function, 86
heap API, 86
heap .c file, 161
HeapCompact function, 86
HeapDestroy function, 86
heap dump, 60
HeapFree function, 86
HeapInit function, 161
HeapReAlloc function, 86
Heaps, 59

fragmentation of, 85
implementation of, 84
local heap, 85
maximum size of, 85
memory regions for, 83
overflow of, 85
private heaps, 85
remote, 85
shared, 83, 85
unmovable memory blocks

and, 85
HeapSize function, 86
HeapValidate function, 86
Heap Verifier shim library, 223

 IOCTL 243

Heap Walker utility, 48, 59-61
high-level platform initialization,

125
history of Windows Embedded

CE, 6
hive-based registry, 193
HIVE BOOT SECTION marker, 196
HKEY_CLASSES_ROOT hive, 193
HKEY_CURRENT_USER hive, 193
HKEY_ LOCAL_MACHINE\\

Drivers\\ProcGroup_XXXX
registry key, 144

HKEY_LOCAL_ MACHINE\\Drivers
registry key, 165, 180

HKEY_LOCAL_MACHINE\\
HARDWARE\\DEVICEMAP\\
KEYBD registry key, 149

HKEY_LOCAL_MACHINE\\
HARDWARE\\DEVICEMAP\\
MOUSE registry key, 149

HKEY_LOCAL_MACHINE\\
HARDWARE\\DEVICEMAP\\
TOUCH registry key, 149

HKEY_LOCAL_MACHINE hive, 193
HKEY_LOCAL_MACHINE\\Init

registry key, 164, 177
HKEY_LOCAL_MACHINE\\System\\

CurrentControlSet\\Control\\
Power registry key, 183

HKEY_LOCAL_MACHINE\\System\\
GDI\\DisplayCandidates
registry key, 148

HKEY_LOCAL_MACHINE\\
System\\StorageManager\\
Autoload registry key, 149

HKEY_LOCAL_MACHINE\\
System\\StorageManager\\
Profiles registry key, 149, 187

HKEY_LOCAL_ MACHINE\\
System\\StorageManager
registry key, 149

HKEY_USER hive, 193
hot device restart, 129
HP Compaq t5530 Thin Client

Development Platform, 121
HTTP . See Hypertext Transfer

Protocol (HTTP)
hybrid driver, 135, 137
Hypertext Transfer Protocol

(HTTP), 75

I
IClass registry parameter, 146, 182
IE .reg file, 115
IE subdirectory, 103
IISR . See installable ISR routines
IL . See Intermediate Language (IL)
image build modes, 105–106
image size exceeds the value

specified in Config .bib, 119
IMGAUTOFLUSH variable, 42
IMGCELOGENABLE variable, 42
IMGEBOOT variable, 42
IMGFLASH variable, 42
IMGHDSTUB variable, 42
IMGNODEBUGGER variable, 42,

106
IMGNOKITL variable, 42, 106
IMGNOXXX environment

variables, 105
IMGOSCAPTURE variable, 42
IMGPROFILER variable, 42
IMGRAM64 variable, 42
import files from a device, 55
inaccessible pointers, 153
Inbox, 103
include a file into the system

image, 200
INC subdirectory, 123
Index registry parameter, 146
industrial automation systems, 7
industrial controller, 169
infrastructure solutions, 6
InitDB .ini file, 111
initialization files

CE .bib, 111
InitDB .ini, 111
InitObj .dat, 111
RegInit .ini, 111

InitializeCriticalSection function, 95
initial stage of embedded

systems, 5
InitMemoryPool function, 161
InitObj .dat file, 111, 115
input files for the build process, 101
input/output control codes

(IOCTL), 2, 127, 129, 135
input/output (I/O), 77
installable ISR routines, 99, 147, 149

C run-time library and, 151
requirements for, 150

installation instructions for
Windows Embedded CE, 10

Install Visual Studio 2005 option,
12

integration with Visual Studio, 10
InteliSense technology, 10, 33
Intel PXA27x Processor

Development Kit
(MainstoneIII), 121

Intel StrataFlash NOR Driver, 197
InterfaceType registry parameter,

147
interlocked functions, 93-94
intermediate builds, 171
intermediate global positioning

system (GPS) driver, 8
Intermediate Language (IL), 203
Internet Appliance, 169
Internet Explorer 6, 6, 103
Internet Protocol security (IPsec), 8
interprocess communication, 87
InterruptDisable function, 128, 143
InterruptDone function, 100, 128,

143, 150
InterruptInitialize function, 100,

143, 150
InterruptMask function, 128, 143
interrupt request (IRQ), 98, 127
interrupts, 88

architecture of, 98–100
drivers and, 149
handling of, 99
peripheral devices and, 98

interrupt service routine (ISR),
80, 98

external dependencies and, 98
main task of an, 98, 149

interrupt service thread (IST), 98,
136

events and, 150
main task of an, 100
system interrupt (SYSINTR) and,

150
WaitForSingleObject function

and, 150
IoBase parameter, 143, 147
I/O . See input/output (I/O)
IOCLT_HAL_REBOOT code, 129
IOCTL . See input/output control

codes (IOCTL)

244 IOCTL_HAL_GET_DEVICE_INFO code

IOCTL_HAL_GET_DEVICE_INFO
code, 129

IOCTL_HAL_GET_UUID code, 129
IOCTL_HAL_POSTINIT code, 129,

162
IOCTL_HAL_REQUEST_IRQ code,

129
IOCTL_HAL_REQUEST_SYSINTR

code, 129, 150
IOCTL_POWER_CAPABILITIES

code, 185
IOCTL_POWER_GET code, 185
IOCTL_POWER_QUERY code, 185
IOCTL_POWER_SET code, 185
IOCTL_REGISTER_POWER_

RELATIONSHIP code, 185
IoLen parameter, 143, 147
IP address detection, 212
ipconfig .exe, 213
IP phone, 169
IPsec . See Internet Protocol

security (IPsec)
IPv4, 8
IPv6, 8
IRQ . See interrupt request (IRQ)
Irq registry parameter, 147
ISR . See interrupt service routine

(ISR)
IsrDll registry parameter, 147
IsrHandler registry parameter, 147
IST . See interrupt service thread

(IST)

J
JIT . See Just-In-Time (JIT)

compilation
JScript 5 .5, 103
Just-In-Time (JIT) compilation, 203

K
Kato .dll library, 216
KbdGen .exe, 74
k .coredll .dll library, 75, 77
KdataStruct structure, 160
kernel abstraction, 122
kernel API, 143
kernel architecture, 76–77
kernel debugging support, 42,

106

kernel .dll library, 77, 127
KernelFindMemory function, 161
Kernel Independent Transport

Layer (KITL), 42, 57, 77, 132,
217

KernelInit2 function, 162
KernelInit function, 161
KernelInitialize function, 160
KernelLibIoControl function, 100,

150
kernel libraries, 75
kernel-mode drivers, 77, 78, 141

advantages of, 142
system failures and, 142
user interface and, 142

kernel-mode servers, 75
KernelRelocate function, 160
kernel space, 7, 81
KernelStart function, 160-161
kernel startup function, 160
Kernel Tracker utility, 48
Kernel Tracker utility, 69–71
KEYBD registry key, 149
keyboard layout files, 74
keyboard messages, 77
K flag, 145
KITL . See Kernel Independent

Transport Layer (KITL)
kitl .dll library, 77, 123
KITL Startup server, 57
KITL subdirectory, 123
KITL support, 168
kmisc .c file, 163

l
label file, 201
LAN . See Local Area Network

(LAN)
launching applications at the

system startup, 165
LaunchXX registry parameter,

165, 177
layered driver, 135
LDAP . See Lightweight Directory

Access Protocol (LDAP)
LeaveCriticalSection function, 95
legacy namespace, 140
Lightweight Directory Access

Protocol (LDAP), 8

limit access to kernel memory, 142
line of operating systems, 5
LINK environment variable, 105
linker settings

stack overflow option, 86
List Nearest Symbol utility, 54
loader .c file, 16-162
LoaderInit function, 162
loading a block driver, 146
loading a mouse driver, 149
loading of user-mode drivers,

144, 146
loading stream drivers, 146
LoadIntChainHandler function,

99, 143, 150
load process for native drivers, 148
load stage flags, 196
LocalAlloc function, 86
Local Area Network (LAN), 8
Locale setting, 41, 111
LocalFree function, 86
local function variables, 86
local heap, 85
localized executable files and

libraries, 111
Localize the build option, 41
LocalReAlloc function, 86
LocalSize function, 86
LOC_STORE_HD_FOLDER macro,

188
LoggerInit function, 162
logging in XML, 221
low energy consumption mode,

128
low-level hardware initialization,

125
low-quality driver, 142

M
MacPhyter network card . See

National Semiconductor
DP83815 (MacPhyter)
network card

macros for debug zones, 157
main device functionality, 171
Main() function, 125
MainstoneIII . See Intel PXA27x

Processor Development Kit
(MainstoneIII)

 My Projects subdirectory 245

Makefile files, 117
Makefile .def, 117

Makeimg errors, 119
Makeimg .exe, 106
Make Run-Time Image After Build

option, 46- 47
Make Run-Time Image (Makeimg),

106, 110
Make Run-Time Image option, 45
managed code application

development, 203
managed code applications, 4
managing thread execution, 88
manually scheduled execution of

threads, 93
manual reset event, 97
Manual Startup server, 57
mapfile .c file, 161
MapfileInit function, 161
mapping of pointers between

processes, 151
mapping of virtual memory

addresses to physical
addresses, 78

MapViewOfFile function, 88
Marshal .hpp file, 154
Marshaling, 151

aliases and, 152
C++ classes for, 154
restrictions for user-mode

drivers, 153
risks of, 153
types of, 152
wrapper classes for, 155

MarshalledBuffer_t class, 155
masks for debug zones, 156
maximum number of

simultaneously running
processes, 7

maximum size of heaps, 85
MB442 Development Platform,

121
MDD . See model device driver

(MDD)
media–based registry hive files,

195
media manager, 77
media profile, 190
MemBase registry parameter, 147
MemLen registry parameter, 147

memory buffers, 87
memory controller, 160
memory management, 77, 83
Memory Management Unit

(MMU), 78, 160
memory-mapped file API, 88
memory-mapped files, 87

file-backed, 87
interprocess communication

and, 87
named, 87
RAM-backed, 87
Unnamed, 87

memory regions for static
mapping, 80

MEMORY Section, 112
memory types, 112

FIXUPVAR, 112
RAM, 112
RAMIMAGE, 112
RESERVED, 112

MFC . See Microsoft Foundation
Classes (MFC)

MGXXX environment variables,
105

Microprocessor without
Interlocked Pipeline Stages
(MIPS), 2, 121

Microsoft Foundation Classes
(MFC), 8, 211

Microsoft Message Queuing
(MSMQ), 9

Microsoft operating systems
line of, 5

Microsoft SQL Server Compact, 8
Microsoft Visual Studio 2005, 2,

10
build mode selection, 105
Catalog Items View in, 36
Class View in, 37
environment settings for, 23
installation of, 11
main window of, 32
Output window of, 33
Platform Builder for Windows

Embedded CE 6 .0 and, 11
Project submenu of, 38
Service Pack 1 for, 24
Service Pack 1 for .NET Com-

pact Framework 2 .0 and, 18

Setup Wizard of, 13
Solution Explorer of, 34
subprojects and, 205
View menu of, 38

Microsoft Windows CE, 5, 6
Microsoft Windows Mobile, 6
minimum power usage mode, 128
minor releases of Windows

Embedded CE, 6
MIPS . See Microprocessor without

Interlocked Pipeline Stages
(MIPS)

MIPSSetup function, 160
MMU . See Memory Management

Unit (MMU)
mobile handheld, 169
model device driver (MDD), 135
MODULES attributes, 114
MODULES section, 113
Modules utility, 54
monitoring

process threads, 70
system events, 71

monolithic driver, 135, 137
monolithic image of the

operating system, 110
Motorola format, 74, 111
MountAsBootable registry

parameter, 193
MountAsRoot registry parameter,

193
mouse driver, 149
mouse messages, 77
MOUSE registry key, 149
MSMQ . See Microsoft Message

Queuing (MSMQ)
Msxml .dll library, 75
multimedia technologies, 6
multitasking, 88

preemptive, 90
multithreaded operating system,

75
mutexes, 93, 95

functions for working with, 96
mutual blocking, 91
MyDriver .dll sample, 181
My Projects subdirectory, 115

246 named memory-mapped files

n
named memory-mapped files, 87
named properties, 198
named stream drivers, 139
National Semiconductor DP83815

(MacPhyter) network card, 125
native code application

development, 203
native code applications, 4
native drivers, 138, 140

load process for, 148
NDIS . See Network Driver

Interface Specification (NDIS)
NE2000-compatible network

card, 125
NEC Solution Gear 2-Vr5500

Development Kit, 121
NETCFV2 subdirectory, 103
network boot loader, 126
network cards, 124
Network Driver Interface

Specification (NDIS), 8
network drivers, 143

poll mode and, 149
Network Multimedia Feature

Pack, 7
network projector, 169
Network Utilities (IpConfig, Ping,

Route) catalog item, 213
NK .BIN file, 110
NKCallIntChain function, 99
NKDeleteStaticMapping function,

143
Nk .exe process, 75, 77, 127
NKGLOBALS structure, 160
nkinit .c file, 161
NK .NB0 file, 110
NKStartup function, 160
Nmake configuration files, 101
Nmake utility, 101, 116
NOLIBC setting, 151
NOMUPS16CODE setting, 151
non-contiguous fragments of

physical memory, 144
non-signaled state of

synchronization objects, 94
non-system development, 206
notifications for power state

changes, 186
NTFS volumes, 110

O
OAL . See OEM adaptation layer

(OAL)
OAL .exe, 123, 127
OALEXE subdirectory, 123
OAL .lib library, 123
OALLIB subdirectory, 123
OBEX . See OBject EXchange

(OBEX)
OBject EXchange (OBEX), 8
object files (.obj), 117
Object Store, 9, 77, 188
object store initialization file, 111,

115
OEM adaptation layer (OAL), 6, 77,

121, 127-129
OEMAddressTable, 80, 160
OEM . See Original Equipment

Manufacturer (OEM)
OEMContinueEraseFlash function,

127
OEMDebugInit function, 125
OEMEthGetFrame function, 127
OEMEthGetSecs function, 127
OEMFinishEraseFlash function, 127
OEMGetRealTime function, 128
OEMGLOBALS structure, 160
OEMIdle function, 128
OEMInitDebugSerial function,

125, 128, 161
OEMInit function, 128, 161
OEMInitGlobals function, 160
OEMInterruptDisable function,

128
OEMInterruptDone function, 128
OEMInterruptEnable function, 128
OEMInterruptHandlerFIQ

function, 128
OEMInterruptHandler function,

99, 128
OEMIoControl function, 128
OEMIsFlashAddress function, 127
OEMLaunch function, 125
OEMMapMemAddr function, 126
OEMPlatformInit function, 125
OEMPowerOff function, 128
OEMPreDownload function, 125
OEMReadDebugByte function,

125, 128
OEMSetAlarmTime function, 128

OEMSetRealTime function, 128
OEMShowProgress function, 126
OEMStartEraseFlash function, 127
OEMWriteDebugByte function,

125, 128
OEMWriteDebugString function,

125, 128, 161
OEMWriteFlash function, 127
Off power state, 183
OMAP5912 Aruba Board, 121
On power state, 183
OpenMsgQueue function, 98
Open New BSP Catalog File in

Catalog Editor flag, 173
OpenProcess function, 92
Open Release Directory in Build

Window option, 45
OpenThread function, 92
operating system images

testing of, 4
operating system (OS), 5
optimizing the efficiency of the

system, 10
Order registry parameter, 146,

148, 165
Original Equipment Manufacturer

(OEM), 6
OSCapture .exe module, 42
OS . See operating system (OS)
OS design

build options and, 41
common properties of the, 39
configuration properties for

the, 40
environment variables and, 104
Locale setting for the, 41
release version of an, 171
separate projects and, 209
subprojects and, 205
templates for the, 169

OS design project, 32
OS design properties, 39
OSDESIGNS subdirectory, 102
OS image editor, 10
OSTEST subdirectory, 103
output method for debugging

messages, 52
Output window, 33
overflow of heaps, 85
ownership of a semaphore, 96

 process threads 247

P
page fault, 79

processing of a, 79
PagePoolInit function, 162
page size of virtual memory, 78
page table, 78
PAN . See Personal Area Network

(PAN)
Parameter Files folder, 178, 180
parental control, 9
Partition Manager, 189
Partitions, 149
PartitionTable registry key, 189
password protection, 198
PBInitEnv .bat file, 2, 101, 104
PBTOOLS subdirectory, 103
PCMCIA registry key, 149
PDA device, 169
PE format . See Portable

Executable (PE) format
performance alerts, 67
performance charts, 67
performance improvements, 7
Performance Monitor utility, 48,

66
extensions for the, 103

performance reports, 67
PerfToCsv utility, 226
peripheral devices

drivers for, 132
interrupts and, 98
power state for, 181

Personal Area Network (PAN), 8
phone device, 169
physical memory

non-contiguous fragments of,
144

physmem .c file, 161
P/Invoke service . See Platform

Invoke (P/Invoke) service
planning phase, 167
Platform .bib file, 111, 133
Platform Builder for Windows

Embedded CE, 11
Debug menu of, 53
installation of, 20–24
Service Pack 1 for, 25
Service Pack 1 for Microsoft

Visual Studio 2005 and, 24
Setup Wizard of, 20, 26

Shared Source feature and, 22
Target menu of, 47
Target toolbar of, 32
Tools menu of, 53

Platform catalog, 101
Platform .db file, 133
platform dependent driver (PDD),

135
platform initialization, 124
Platform Invoke (P/Invoke)

service, 204
Platform .reg file, 115, 133, 179
PLATFORM subdirectory, 102,

122, 129
Plug and Play, 198
PnP messaging system, 198
Pocket Outlook Object Model

(POOM), 8
pocket PCs, 6
pointer mapping, 151
pointer parameter, 151, 154
point-to-point message queue,

93, 97
functions for working with a, 98

Point-to-Point Protocol over
Ethernet (PPPoE), 8

Point-to-Point Tunneling Protocol
(PPTP), 9

poll mode, 149
POOM . See Pocket Outlook

Object Model (POOM)
Portable Executable (PE) format, 7
porting a driver, 137
POSTLINK_PASS_CMD variable, 118
postmortem debugging, 10
Post-Sysgen errors, 118
post-sysgen stage, 106, 109
POWER_CAPABILITIES structure,

185
POWER_CAP_PARENT flag, 185
power management, 181

AdvertiseInterface function and,
182

audio output and, 183
backlight and, 183
interaction with applications

and drivers, 184
IOCTL control codes for, 185
notifications for, 186
Power Manager and, 181

power state changes, 186
power state for peripheral

devices or the system, 181
predefined states for, 182
subsystem for, 181

power management codes, 127
PPPoE . See Point-to-Point

Protocol over Ethernet
(PPPoE)

PPTP . See Point-to-Point
Tunneling Protocol (PPTP)

PQOAL . See Production Quality
OAL (PQOAL)

predictability of execution, 91
preemptive multitasking support,

75, 90
Prefix registry parameter, 146
PRELINK_PASS_CMD variable, 118
pre-sysgen stage, 106, 108
primary thread, 88
printf debugging, 155
Print Screen utility, 227
prioritization of threads, 88

race conditions and, 91
priority inversion, 89, 91
Private catalog, 101
private heaps, 85
PRIVATE subdirectory, 102
PRJ_BOOTDEVICE_ATAPI

environment variable, 188
PRJ_BOOTDEVICE_MSFLASH

environment variable, 188
PRJ_ENABLE_FSMOUNTASROOT

environment variable, 188
PRJ_ENABLE_REGFLUSH_THREAD

environment variable, 197
PRJ_XXX environment variables,

105
process .c file, 161
Processes utility, 54
process for building a device, 172
process heaps, 59

initial size of, 85
process loading, 77
process management, 77, 88
process of test execution, 219
processor architectures for

Windows Embedded CE, 7
process threads

monitoring of, 70

248 Process Viewer utility

Process Viewer utility, 48, 63-64
ProcGroup registry parameter, 144
PROCInit function, 161
ProcName registry parameter, 144
ProcVolPrefix registry parameter,

144
production costs, 168
Production Quality OAL (PQOAL),

8, 129
ProfileDir registry value, 195
profiler subsystem, 71
Program Files directory, 115
Project .bib file, 112
Project .reg file, 115
Project Settings dialog box, 176
Project submenu of Microsoft

Visual Studio 2005, 38
Promise Controller ATAPI driver,

197
PS/2 keyboard driver, 148
pTOC variable in Nk .exe, 159
Public catalog, 101
PUBLIC subdirectory, 102
PulseEvent function, 97
PXA270 Development Platform,

121

Q
Q flag, 146
quality of a device, 121
quantum, 89

R
R2 upgrade, 7
race conditions, 91
Radio Interface Layer (RIL), 8
RAM-backed memory-mapped

files, 87
RAM–based registry, 197
RAM . See random-access memory

(RAM)
RAM encryption, 188
RAM file system, 192
RAMIMAGE memory type, 112
RAM memory type, 112
random-access memory (RAM), 42
range of devices, 9
RAPI . See Remote API (RAPI)

rapid systems and application
development, 8

RAS . See Remote Access Services
(RAS)

RDP . See Remote Desktop
Protocol (RDP)

RDP subdirectory, 103
ReadFile function, 139
ReadGenericData function, 194
ReadLog .exe, 74
ReadMsgQueueEx function, 98
ReadMsgQueue function, 98
RealTek RTL8139 network card,

125
real-time communications (RTC), 8
real-time hardware clock, 128
real-time operating system, 75

predictability of execution in
a, 91

Rebuild All Subprojects option, 45
Rebuild and Clean Sysgen option,

46
Rebuild Current BSP and

Subprojects option, 46
Rebuild Solution option, 45
reducing development time, 130
reflash device firmware, 122
reflector service, 142-143
RegCloseKey function, 194
RegCopyFile function, 194
RegCreateKeyEx function, 194
RegDeleteKey function, 194
RegDeleteValue function, 194
RegEnumKeyEx function, 194
RegEnumValue function, 194
RegFlushKey function, 194, 196
RegInit .ini file, 111
Registers utility, 54
registry API, 194
registry editor, 10, 33, 48, 64
registry initialization file, 111, 115
registry settings for stream

drivers, 146
registry types, 194
RegOpenKeyEx function, 194
RegQueryInfoKey function, 194
RegQueryValueEx function, 194
RegSetValueEx function, 194
Release build mode, 105
release directory, 40

flushing of event logging to
the, 42

Release Directory Module option,
48

ReleaseMutex function, 96
ReleasePowerRequirement

function, 186
release-quality drivers, 6
ReleaseSemaphore function, 96
RELEASETYPE variable, 118, 176
RELFSD file system, 188
reload a driver, 142
Remote Access Services (RAS), 9
Remote API (RAPI), 8
Remote Desktop Protocol (RDP),

8, 103
remote heap, 85
Remote Registry Editor, 64
Remote Registry Editor . See

registry editor
Remote Tools Framework, 25
Remote Tools option, 48
remote utilities, 55
Remote Zoom utility, 227
rename files and directories

stored on a device, 55
Renesas US7750R HARP (Aspen)

Standard Development
Board, 121

reports, 67
RequestDeviceNotifications

function, 199
RequestPowerNotifications

function, 186
requirements

developer workstation, 10
rescheduling, 161
RESERVED memory type, 112
reserved virtual memory, 79
Reset Device option, 48
ResetEvent function, 97
resource manager, 77
ResumeThread function, 92
RETAILLED macro, 157
RETAILMSG macro, 106, 157
RETAILREGISTERZONES macro,

156-157
reusing existing code, 129
RIL . See Radio Interface Layer (RIL)
risks of buffer marshaling, 153

 Spy utility 249

robotics equipment, 7
ROM and RAM File System

option, 192
ROM files, 74
ROM file system, 192
ROMHDR region, 74, 159
Romimage .exe, 111
ROM–only File System option, 192
ROMPID region, 74
ROMSIZE parameter, 113
ROMSTART parameter, 113
ROMWIDTH parameter, 113
root catalog, 187
root file system, 187
RootKey value, 147, 165, 180
round-robin scheduling of

threads, 89
RTC . See real-time

communications (RTC)
RunApps function, 163
Run Programs option, 48
run-time image

build stages for a, 107
configuration files for the, 101
include a file into the, 200
preparing for the execution of

the, 159
testing of, 215–230

Run-time image can be larger
than 32 MB setting, 42

run-time safety checks, 10

S
safe copy method, 153
sboot loader, 122
schedule .c file, 162
scheduler, 77, 88, 93
screen capture, 227
SCRIPT subdirectory, 103
SDIO . See Secure Digital Input

Output (SDIO)
SDK . See Software Development

Kit (SDK)
SDK subdirectory, 102
SDMMC registry key, 149
SDP2420 Development Board, 121
secondary display, 148
secure copy, 151

Secure Digital Input Output
(SDIO), 6

security of drivers, 142-143
self-developed BSP, 171
semaphores, 93, 96

functions for working with, 96
ownership of, 96

separate projects for application
development, 209

Serial ATA, 197
serial port operations, 125
Server Message Block (SMB), 9
server-side program (CETest .exe),

216
server solutions

embedded systems and, 6
SERVERS subdirectory, 103
service interface, 136
Service Pack 1 for .NET Compact

Framework 2 .0, 18
Service Pack 1 for Platform

Builder, 25
Servicesd .exe, 75
Service Status window, 51
session data analysis, 71
Session Initiation Protocol (SIP), 8
SetEvent function, 97
SetFilePointer function, 139
SetPowerRequirement function,

186
SetSystemPowerState function, 187
SetThreadContext function, 92
SetThreadPriority function, 92
set-top box, 169
Setup Wizard, 20, 26
SH4 processor, 2, 121
shared heap, 83, 85
shared memory, 151
Shared Source feature, 22, 102
Shell, 75
Shell API, 200
Shell .exe . See Target Control

Service (Shell .exe)
SHELLSDK subdirectory, 103
SHELL subdirectory, 103
Shell Verifier shim library, 223
ShimGenUI .exe utility, 224
Shim library, 222
Ship build mode, 105
shortcuts, 201

Short Message Service (SMS), 8
signaled state of synchronization

objects, 94
SignalStarted function, 166
SIM . See Subscriber Identity

Module (SIM)
Simple Network Management

Protocol (SNMP), 8
Simple Object Access Protocol

(SOAP), 6
single-level priority inversion, 91
SIP . See Session Initiation Protocol

(SIP)
size of a virtual memory page, 78
Sleep function, 92
small-footprint device, 169
smart phones, 6
SMB . See Server Message Block

(SMB)
SMS . See Short Message Service

(SMS)
SNMP . See Simple Network

Management Protocol
(SNMP)

SOAP . See Simple Object Access
Protocol (SOAP)

SOC chip, 131
SOC chip . See system-on-chip

(SOC)
Software Development Kit (SDK),

3, 171, 209
Solution Explorer, 33-34, 46, 178
solutions

Windows CE–based, 7
source code, 8, 123
SOURCELIBS variable, 117
Sources .cmn and, 118
Sources .cmn file, 176
Sources file, 101

Call Profiler utility and, 71
format of a, 117
Sysgen_capture .bat and, 74
variables for, 117

SOURCES variable, 117
Speech API 5 .0, 8, 103
SPEECH subdirectory, 103
Spy utility, 48, 67

browse open windows of a
device with the, 67

required components for, 55

250 SQLCE subdirectory

SQLCE subdirectory, 103
SQL Server CE, 6

libraries for, 102
SQL Server Compact engine, 198
SRAM, 197
SRC directory, 123
SRE parameter, 113
stability of drivers, 142
stack overflow option, 86
stack regions in memory, 83
stack usage, 86

default stack size and, 87
exception handling and, 86
threads and, 86

stages during the build process,
106

StampBin .exe, 74
standalone devices, 74
standard shell, 200
standard subdirectories, 102
Standard Template Library (STL),

8, 206
Startup() function, 125, 160
startup sequence

automatically loading drivers
during the, 180

launching applications during
the, 165

startup sequence, 159–166
Startup server, 57
states of virtual memory, 79
static data blocks, 87

read-only data and, 87
read/write data and, 87

static IP address on a device, 213
static libraries (.lib), 117
static mapping of virtual memory,

80
caching and, 80
regions for, 80

Status registry parameter, 148
step-by-step debugging, 155
STi7109 MB442 Development

Platform, 121
STL . See Standard Template

Library (STL)
STMicroelectronics STi7109

MB442 Development
Platform, 121

StopDeviceNotifications
function, 199

StopPowerNotifications
function, 186

Storage Manager, 149, 187
stream drivers, 135

architecture of, 140
automatic loading at system

startup, 147
file namespaces and, 139
registry settings for, 146

stream interface functions, 139
Stress Tool utility, 227
Strict localization checking in the

build option, 41
subproject .bib files, 112
subproject build order, 38
Subproject Image Settings option,

43
subprojects, 205
Subscriber Identity Module (SIM), 8
subsystem for power

management, 181
sub-test results, 220
supported technologies, 8
Suspend mode, 139
SuspendThread function, 92
SwitchToFiber function, 93
synchronization among different

processes, 96
synchronization objects

non-signaled state of, 94
signaled state of, 94
thread descriptors as, 94

synchronization objects, 93–98
synchronous access to user

buffers, 142, 151, 153
syntax highlighting, 10
SysDebugInit function, 162
Sysgen .bat file, 108
Sysgen BSP filtration, 109
Sysgen_capture .bat file, 74
Sysgen errors, 118
Sysgen option, 46
Sysgen stage, 106, 108
SYSGEN_UIPROXY identifier, 142
SYSGEN_XXX environment

variables, 101, 105
SYSINTR_CHAIN identifier, 99

SYSINTR . See system interrupt
(SYSINTR)

Sysintr registry parameter, 147
SystemActivity timer, 184
system API, 75
system architecture changes, 7
system architecture of Windows

Embedded CE, 75
system event collection, 42
system events

filtering of, 71
monitoring of, 71

system failure, 142
system hive, 194
SystemHive registry value, 195
SystemIdle timer, 184
System Information option, 48
System Information utility, 65
system interrupt (SYSINTR), 98,

127, 150
system libraries

backup and restore of, 74
system-on-chip (SOC), 138, 160
system power state, 181
system processes, 7
system shell, 75
system stability, 143
SystemStartupFunc function, 162

T
t5530 Thin Client Development

Platform, 121
table of contents (TOC), 159
tagged binary image, 111
TAPI . See Telephony Application

Programming Interface (TAPI)
Target Control option, 48
Target Control Service (Shell .

exe), 57
target device

establishing a connection
between the developer
workstation and the, 57

file system of a, 187
target device development

stages, 3
Targeted Build Settings option, 45
Targeted Build Settings submenu,

46

 User-mode Driver Framework 251

TARGETLIBS variable, 117
Target menu, 47
TARGETNAME variable, 117
Target toolbar, 32
TARGETTYPE variable, 117
tasks of a boot loader, 124
TcpConnectionA .dll library, 212
TCP/IP . See Transmission Control

Protocol/Internet Protocol
(TCP/IP)

Team Foundation System, 54
technologies supported by

Windows Embedded CE, 8
telecommunication equipment, 7
Telephony Application

Programming Interface
(TAPI), 8

Telnet, 9
TerminateProcess function, 92
TerminateThread function, 92
testing

device connections, 58
logging in XML during, 221
operating system images and, 4
overview of, 215–230
production and, 171
scenarios for, 215
stress testing, 227

Texas Instruments SDP2420
Development Board, 121

TFAT . See transaction-safe FAT
(TFAT)

TFTP . See trivial file transfer
protocol (TFTP)

thin client, 169
third-party software, 200
THRDInit function, 161
thread .c file, 161
thread drivers, 138

worker bee of, 139
thread management, 77
threads

automatic reset events and, 97
blocking of, 94
context of, 88
critical sections and, 93
default priority of, 89
descriptors of, 94
events and, 93

interrupts and, 88
managing execution of, 88
manually scheduled execution

of, 93
manual reset events and, 97
multitasking and, 88
mutexes and, 93
mutual blocking of, 91
point-to-point message queues

and, 93
primary, 88
prioritization of, 88- 89
priority inversion and, 89
processes and, 88
quantum and, 89
race conditions and, 91
round-robin scheduling of, 89
semaphores and, 93
stacks and, 86
suspend execution of, 92
theoretical limitation of, 88

Threads utility, 54
Timeouts registry key, 184
timer codes, 127
time-slicing, 89
time-slotted operation, 88
TI OMAP5912 Aruba Board, 121
TlsAlloc function, 92
TlsFree function, 92
TlsGetValue function, 92
TOC . See table of contents (TOC)
Tools menu, 53
TOUCH registry key, 149
touch screen messages, 77
tracing of filesys .dll, 164
traditional approach to device

development, 167
transaction-safe FAT (TFAT), 6,

9, 188
transaction support, 198
translating virtual addresses into

physical addresses, 78
Transmission Control Protocol/

Internet Protocol (TCP/IP),
8, 212

transports, 57
subsystem for debugging, 125

trial version of Windows
Embedded CE, 10, 28

trivial file transfer protocol
(TFTP), 124

TryEnterCriticalSection
function, 95

Tux command-line parameters,
220

Tux utility, 216

u
Udevice .exe . See User Mode

Driver Host (Udevice .exe)
UDFS . See User-defined File

System (UDFS)
UDFS registry key, 149
UDP . See User Datagram Protocol

(UDP)
UI Proxy device driver, 142
unallocated memory

algorithm of searching for, 85
Unattended power state, 183
unified build system, 2, 6

directory tree of the, 102
unified build system, 101–119
unique device identifier, 129
universal driver, 143
Universal Plug and Play (UPnP),

9, 75
Universal Serial Bus (USB), 6
Unldcmd .exe, 74
unmanaged code, 203
UnmapViewOfFile function, 88
unmovable memory blocks, 85
upgrades for Windows Embedded

CE, 31
UPnP . See Universal Plug and Play

(UPnP)
US7750R HARP (Aspen) Standard

Development Board, 121
USB . See Universal Serial Bus

(USB)
UserActivity timer, 184
User Datagram Protocol (UDP),

124
User-defined File System (UDFS),

6, 188
User hive, 194
User-mode Driver Framework, 143

252 User Mode Driver Host (Udevice.exe)

User Mode Driver Host (Udevice .
exe), 75, 142

user-mode drivers, 78, 141
Binary Image Builder (BIB) and,

145
buffers and, 143
device context and, 145
group number of, 144
inaccessible pointers in, 153
kernel API and, 143
loading of, 144
marshaling restrictions for, 153
restrictions of, 142

user-mode servers, 75
user processes, 75
user space, 81
Use xcopy instead of links to

populate release directory
setting, 42

utilities in the Windows
Embedded CE Test Kit (CETK),
222

V
variables for Sources files, 117
variables used to control the build

process, 41
VB .NET code, 203
VBScript 5 .5, 103
video adapter driver, 148
ViewBin .exe, 74
View menu of Microsoft Visual

Studio 2005, 38
view the contents of the device

file system, 55
virtual address space, 75
VirtualAllocCopyEx function, 81,

84
VirtualAllocEx function, 81, 84
VirtualAlloc function, 81, 84
VirtualCopyEx function, 81, 84
VirtualCopy function, 81, 143
VirtualFree function, 84
virtual memory

addressing of, 79
allocating with fine granularity,

84
architecture of, 78

dynamic-link libraries (DLLs)
and, 78

dynamic mapping of, 80
kernel regions in, 82
limit access to kernel memory,

142
limitation of, 7
mapping to physical addresses,

78
Memory Management Unit

(MMU) and, 78
page size of, 78
page table and, 78
physical addresses and, 78
stack regions in, 83
states of, 79
static mapping of, 80
system kernel and, 2, 75
user address space in, 82
user processes and, 2, 75

virtual memory API, 84
virtual private network (VPN), 8
VirtualProtectEx function, 84
VirtualProtect function, 84
VirtualQueryEx function, 84
VirtualQuery function, 84
VirtualSetAttributesEx function,

84
vm .c file, 161
VMInit function, 161
Voice over Internet Protocol

(VoIP), 6, 103
Voice over IP PXA270

Development Platform, 121
VoIP . See Voice over Internet

Protocol (VoIP)
VOIP subdirectory, 103
VPN . See virtual private network

(VPN)
VS80sp1-KB926601-X86-ENU .exe

file 24

W
WaitForMultipleObjects function,

94, 96
WaitForSingleObject function, 94,

96, 100, 150
WAN . See Wide Area Network

(WAN)

WAP . See Wireless Application
Protocol (WAP)

Watch utility, 54
WCEAPPSFE subdirectory, 103
Wceapps .reg file, 115
Wceldcmd .exe, 74
WCESHELLFE subdirectory, 103
Wceshell .reg file, 115
WCF . See Windows Communi-

cation Foundation (WCF)
Web pad, 169
Web Services, 204
WEPOS . See Windows Embedded

for Point of Service (WEPOS)
Wide Area Network (WAN), 8
Win32 API, 7, 75
WINCE600 directory, 101
Wince .bat file, 2, 101, 104
WINCECALLCAP variable, 71
WINCEDEBUG environment

variable, 105-106
WINCEFASTCAP variable, 71
WINCEOEM variable, 176
WINCEREL variable, 110
WINCESHIP environment variable,

105
WINCESHIP variable, 42, 106
window manager, 77

secondary display and, 148
window messaging manager, 77
Windows CE Debug window, 33
Windows CE Log window, 33
Windows Communication

Foundation (WCF), 204
Windows Embedded CE, 6

catalog hierarchy of, 34
componentized design of, 6
development tools for, 10-74
driver directories of, 138
drivers included in, 132
file system of, 187
hardware-dependent part of, 102
hardware-independent part

of, 102
history of, 6
installation instructions for, 10
kernel architecture of, 76–77
maximum number of

simultaneously running
processes on, 7

 Zoom utility 253

Windows Embedded CE (continued)
monolithic image of the, 110
multimedia technologies and, 6
multitasking support system

of, 89
 .NET Compact Framework and, 6
performance improvements

in, 7
Platform Builder Service Pack 1

for, 26
Platform catalog of, 101
Private catalog of, 101
processor architectures and, 2
processor architectures for, 7
Public catalog of, 101
R2 upgrade of, 7
range of devices supported

by, 9
requirements for the developer

workstation, 10
solutions based on, 7
source code of, 102
startup sequence of, 159–166
system architecture changes

in, 7
system architecture of, 75
technologies supported by, 8
trial version of, 10, 28
upgrades for, 31
virtual address space of, 2

Windows Embedded CE 6 .0
Platform Builder Service
Pack 1 .msi file, 26

Windows Embedded CE Test Kit
(CETK), 4

ActiveSync and, 216
architecture of the, 215

client-side program (Clientside .
exe), 216

directory of the, 103
Excel and, 226
Kato .dll library, 216
Kernel Independent Transport

Layer (KITL) and, 217
logging in XML and, 221
process of test execution and,

219
scenarios for, 215
server-side program (CETest .

exe), 216
sub-test results and, 220
Tux utility, 216
utilities in the, 222

Windows Embedded CE Test Kit
(CETK), 215–216

Windows Embedded for Point of
Service (WEPOS), 6

Windows Media 9, 6
Windows Media Audio (WMA), 9
Windows Media Player, 6
Windows Messenger, 8
Windows Sockets (Winsock), 8
Windows Template Library (WTL),

8, 206
Windows XP Embedded, 6
Winhttp .dll library, 75
Wininet .dll library, 75
Winsock . See Windows Sockets

(Winsock)
Winsock .dll library, 75
Wireless Application Protocol

(WAP), 8
WMA . See Windows Media Audio

(WMA)
WordPad, 103

worker bee of thread drivers, 139
wrapper classes for marshaling, 155
WriteFile function, 139
WriteGenericData function, 194
WriteMsgQueue function, 98
Write run-time image to flash

memory setting, 42
WTL . See Windows Template

Library (WTL)

X
x86 BIOS loading utility, 74
x86 processor, 2

Device Emulator and, 121
FastCAP functionality and, 72

XIP . See execute in place (XIP)
XML . See Extensible Markup

Language (XML)
XXX_Close function, 139
XXX_Deinit function, 139
XXX_Init function, 139
XXX_IOControl function, 139
XXX_Open function, 139
XXX_PowerDown function, 139
XXX_PowerUp function, 139
XXX_PreClose function, 139
XXX_PreDeinit function, 139
XXX_Read function, 139
XXX_Seek function, 139
XXX_Write function, 139

Z
Zoom option, 48

required components for, 55
Zoom utility, 62

Code Complete, Second Edition
Steve McConnell � ISBN 0-7356-1967-0
For more than a decade, Steve McConnell, one of the premier
authors and voices in the software community, has helped
change the way developers write code—and produce better
software. Now his classic book, Code Complete, has been fully
updated and revised with best practices in the art and science
of constructing software. Topics include design, applying
good techniques to construction, eliminating errors, planning,
managing construction activities, and relating personal
character to superior software. This new edition features fully
updated information on programming techniques, including
the emergence of Web-style programming, and integrated
coverage of object-oriented design. You’ll also find new code
examples—both good and bad—in C++, Microsoft® Visual
Basic®, C#, and Java, although the focus is squarely on
techniques and practices.

More About Software Requirements:
Thorny Issues and Practical Advice
Karl E. Wiegers � ISBN 0-7356-2267-1
Have you ever delivered soft-
ware that satisfied all of the
project specifications, but failed
to meet any of the customers
expectations? Without formal,
verifiable requirements—and a
system for managing them—the
result is often a gap between
what developers think they’re
supposed to build and what
customers think they’re going
to get. Too often, lessons about
software requirements engi-
neering processes are formal or academic, and not of value
to real-world, professional development teams. In this follow-
up guide to Software Requirements, Second Edition, you will
discover even more practical techniques for gathering and
managing software requirements that help you deliver software
that meets project and customer specifications. Succinct and
immediately useful, this book is a must-have for developers
and architects.

Software Estimation: Demystifying the Black Art
Steve McConnell � ISBN 0-7356-0535-1
Often referred to as the “black art” because of its complexity
and uncertainty, software estimation is not as hard or mysterious
as people think. However, the art of how to create effective cost
and schedule estimates has not been very well publicized.
Software Estimation provides a proven set of procedures and
heuristics that software developers, technical leads, and project
managers can apply to their projects. Instead of arcane treatises
and rigid modeling techniques, award-winning author Steve
McConnell gives practical guidance to help organizations
achieve basic estimation proficiency and lay the groundwork to
continue improving project cost estimates. This book does not
avoid the more complex mathematical estimation approaches,
but the non-mathematical reader will find plenty of useful
guidelines without getting bogged down in complex formulas.

Debugging, Tuning, and Testing
Microsoft .NET 2.0 Applications
John Robbins � ISBN 0-7356-2202-7
Making an application the best it can be has long been a time-
consuming task best accomplished with specialized and costly
tools. With Microsoft Visual Studio® 2005, developers have
available a new range of built-in functionality that enables
them to debug their code quickly and efficiently, tune it to op-
timum performance, and test applications to ensure compat-
ibility and trouble-free operation. In this accessible and hands-
on book, debugging expert John Robbins shows developers
how to use the tools and functions in Visual Studio to their full
advantage to ensure high-quality applications.

The Security Development Lifecycle
Michael Howard and Steve Lipner � ISBN 0-7356-2214-0
Adapted from Microsoft’s standard development process, the
Security Development Lifecycle (SDL) is a methodology that
helps reduce the number of security defects in code at every
stage of the development process, from design to release. This
book details each stage of the SDL methodology and discusses
its implementation across a range of Microsoft software, including
Microsoft Windows Server™ 2003, Microsoft SQL Server™ 2000
Service Pack 3, and Microsoft Exchange Server 2003 Service
Pack 1, to help measurably improve security features. You get
direct access to insights from Microsoft’s security team and
lessons that are applicable to software development processes
worldwide, whether on a small-scale or a large-scale. This book
includes a CD featuring videos of developer training classes.

Additional Resources for Developers: Advanced Topics
and Best Practices
Published and Forthcoming Titles from Microsoft Press

For more information about Microsoft Press® books and other learning products,
visit: www.microsoft.com/mspress and www.microsoft.com/learning

Software Requirements, Second Edition
Karl E. Wiegers � ISBN 0-7356-1879-8
Writing Secure Code, Second Edition
Michael Howard and David LeBlanc � ISBN 0-7356-1722-8

CLR via C#, Second Edition
Jeffrey Richter � ISBN 0-7356-2163-2

Microsoft Press products are available worldwide wherever quality computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit our Web site at www.microsoft.com/mspress. To locate your
nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in the United States. (In Canada, call 1-800-268-2222.)

Microsoft® Visual Web Developer™ 2005
Express Edition: Build a Web Site Now!
Jim Buyens � ISBN 0-7356-2212-4
With this lively, eye-opening, and hands-on book, all you need
is a computer and the desire to learn how to create Web pages
now using Visual Web Developer Express Edition! Featuring a
full working edition of the software, this fun and highly visual
guide walks you through a complete Web page project from
set-up to launch. You’ll get an introduction to the Microsoft
Visual Studio® environment and learn how to put the light-
weight, easy-to-use tools in Visual Web Developer Express to
work right away—building your first, dynamic Web pages with
Microsoft ASP.NET 2.0. You’ll get expert tips, coaching, and
visual examples at each step of the way, along with pointers
to additional learning resources.

Microsoft ASP.NET 2.0 Programming
Step by Step
George Shepherd � ISBN 0-7356-2201-9
With dramatic improvements in performance, productivity, and
security features, Visual Studio 2005 and ASP.NET 2.0 deliver a
simplified, high-performance, and powerful Web development
experience. ASP.NET 2.0 features a new set of controls and
infrastructure that simplify Web-based data access and include
functionality that facilitates code reuse, visual consistency, and
aesthetic appeal. Now you can teach yourself the essentials of
working with ASP.NET 2.0 in the Visual Studio environment—
one step at a time. With Step by Step, you work at your own
pace through hands-on, learn-by-doing exercises. Whether
you’re a beginning programmer or new to this version of the
technology, you’ll understand the core capabilities and
fundamental techniques for ASP.NET 2.0. Each chapter puts
you to work, showing you how, when, and why to use specific
features of the ASP.NET 2.0 rapid application development
environment and guiding you as you create actual components
and working applications for the Web, including advanced
features such as personalization.

Programming Microsoft ASP.NET 2.0
Core Reference
Dino Esposito � ISBN 0-7356-2176-4
Delve into the core topics for
ASP.NET 2.0 programming,
mastering the essential skills and
capabilities needed to build high-
performance Web applications
successfully. Well-known ASP.NET
author Dino Esposito deftly builds
your expertise with Web forms,
Visual Studio, core controls,
master pages, data access, data
binding, state management,
security services, and other must-
know topics—combining defini-
tive reference with practical, hands-on programming instruc-
tion. Packed with expert guidance and pragmatic examples, this
Core Reference delivers the key resources that you need to
develop professional-level Web programming skills.

Programming Microsoft ASP.NET 2.0
Applications: Advanced Topics
Dino Esposito � ISBN 0-7356-2177-2
Master advanced topics in ASP.NET
2.0 programming—gaining the
essential insights and in-depth
understanding that you need to
build sophisticated, highly func-
tional Web applications success-
fully. Topics include Web forms,
Visual Studio 2005, core controls,
master pages, data access, data
binding, state management,
and security considerations.
Developers often discover that
the more they use ASP.NET, the
more they need to know. With expert guidance from ASP.NET
authority Dino Esposito, you get the in-depth, comprehensive
information that leads to full mastery of the technology.

Additional Resources for Web Developers

Programming Microsoft Windows® Forms
Charles Petzold � ISBN 0-7356-2153-5

Programming Microsoft Web Forms
Douglas J. Reilly � ISBN 0-7356-2179-9

CLR via C++
Jeffrey Richter with Stanley B. Lippman
ISBN 0-7356-2248-5

Published and Forthcoming Titles from Microsoft Press

Debugging, Tuning, and Testing Microsoft .NET 2.0
Applications
John Robbins � ISBN 0-7356-2202-7

CLR via C#, Second Edition
Jeffrey Richter � ISBN 0-7356-2163-2

Microsoft Press products are available worldwide wherever quality computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit our Web site at www.microsoft.com/mspress. To locate your
nearest source for Microsoft Press products, or to order directly, call 1-800-MSPRESS in the United States. (In Canada, call 1-800-268-2222.)

For more information about Microsoft Press® books and other learning products,
visit: www.microsoft.com/books and www.microsoft.com/learning

Advance your security-programming expertise for
ASP.NET 2.0. A leading security expert shares best
practices, pragmatic instruction, and code samples
in Microsoft Visual C#® to help you develop Web
applications that are more robust, more reliable, and
more resistant to attack. Includes code samples on
the Web.

Your software customers demand—and deserve—
better security and privacy. This book is the fi rst
to detail a rigorous, proven methodology that
measurably minimizes security bugs: the Security
Development Lifecycle (SDL). Two experts from the
Microsoft® Security Engineering Team guide you
through each stage and offer best practices for
implementing SDL in any size organization.

Written as a complement to the award-winning
book Writing Secure Code, this new reference focuses
on the security enhancements in Windows Vista.
Get fi rst-hand insights into design decisions,
and practical approaches to real-world security
challenges. Covers ACLs, BitLocker™, fi rewalls,
authentication, and other essential topics, and
includes C# code samples on the Web.

Writing Secure Code for
Windows Vista™
Michael Howard and David LeBlanc
ISBN 9780735623934

Security Books for Developers
Published and Forthcoming Titles

See more resources at microsoft.com/mspress
and microsoft.com/learning
Microsoft Press® products are available worldwide wherever quality computer books are sold. For more information,
contact your bookseller, computer retailer, software reseller, or local Microsoft Sales Offi ce, or visit our Web site at
microsoft.com/mspress. To locate a source near you, or to order directly, call 1-800-MSPRESS in the United States.
(In Canada, call 1-800-268-2222.)

Developing More-Secure
Microsoft ASP.NET
2.0 Applications
Dominick Baier
ISBN 9780735623316

Writing Secure Code,
Second Edition
Michael Howard and David LeBlanc
ISBN 9780735617223

The Security Development
Lifecycle: Demonstrably
More-Secure Software
Michael Howard and Steve Lipner
ISBN 9780735622142

Hunting Security Bugs
Tom Gallagher, Bryan Jeffries,
Lawrence Landauer
ISBN 9780735621879

Discover how to padlock applications throughout
the entire development process—from designing
applications and writing robust code to testing for
security fl aws. The authors—two battle-scarred veterans
who have solved some of the industry’s toughest
security problems—share proven principles, strategies,
and techniques, with code samples in several languages.

Learn to think like an attacker—with insights from
three security testing experts. This book offers
practical guidance and code samples to help fi nd,
classify, and assess security bugs before your software
is released. Discover how to test clients and servers,
detect spoofi ng issues, identify where attackers can
directly manipulate memory, and more.

The Practical Guide to Defect Prevention
Marc McDonald, Robert Musson, Ross Smith
ISBN 9780735622531

Microsoft® Windows® Presentation
Foundation Developer Workbook
Billy Hollis
ISBN 9780735624184

Developing Drivers with the Microsoft
Windows Driver Foundation
Microsoft Windows Hardware Platform Evangelism Team
ISBN 9780735623743

Embedded Programming with the
Microsoft .NET Micro Framework
Donald Thompson and Rob S. Miles
ISBN 9780735623651

	Windows® Embedded CE 6.0 Fundamentals - Titlepage
	Dedication
	Contents at a Glance
	Table of Contents
	Chapter 1 - Introduction
	About This Book
	Chapter 1: Introduction
	Chapter 2: Operating System and Application Development Tools
	Chapter 3: Operating System Architecture
	Chapter 4: Build System
	Chapter 5: Board Support Package (BSP)
	Chapter 6: Driver Architecture
	Chapter 7: Starting the Operating System
	Chapter 8: Building Devices
	Chapter 9: Application Development
	Chapter 10: Testing Operating System Images
	Glossary
	References
	Resources

	Embedded Systems
	Windows Embedded CE History
	Windows Embedded CE Solutions

	Developer Workstation Requirements

	Chapter 2 - Operating System and Application Development Tools
	Installing Visual Studio 2005
	Installing the Platform Builder Toolkit
	Installing Updates
	Development Tools Interface
	Main Views, Windows, and Menus of the Design Interface

	Remote Utilities
	File Viewer
	Heap Walker
	Zoom
	Process Viewer
	Registry Editor
	System Information
	Performance Monitor
	Spy
	Kernel Tracker
	Call Profiler

	Chapter 3 - Operating System Architecture
	Operating System Kernel Architecture
	Operating System and Hardware Interaction
	Operating System Virtual Memory Architecture
	Memory Management
	Processes, Threads, Fibers, and the Scheduler
	Synchronization Objects
	Interrupt Architecture

	Chapter 4 - Build System
	Directory Tree of the Build System
	Environment Variables of the Build System
	Image Build Modes
	Build Stages
	Pre-Sysgen Build
	Sysgen
	Post-Sysgen Build
	Build Release Directory (Buildrel)
	Make Run-Time Image (Makeimg)

	Configuration Files
	Binary Image Builder (.Bib)
	MEMORY Section
	CONFIG Section
	MODULES Section
	FILES Section

	Object Store Initialization Files (.Dat)
	Registry Initialization Files (.Reg)
	Database Initialization Files (.Db)

	Component and Module Build
	Dirs Files
	Makefile Files
	Sources Files
	Sources.cmn File
	Build Errors
	Sysgen Error
	Post-Sysgen Build Error
	Buildrel Error
	Makeimg Error

	Chapter 5 - Board Support Package (BSP)
	BSP Directory Structure
	Boot Loader
	OEM Abstraction Layer
	Common Platform Code
	Kernel Independent Transport Layer (KITL)
	Drivers
	Configuration Files
	Creating a New BSP

	Chapter 6 - Driver Architecture
	Driver Implementation Architecture
	File System Drivers, Thread Drivers, and Native Drivers
	User-Mode Drivers and Kernel-Mode Drivers
	Loading the Drivers
	Driver Development

	Chapter 7 - Starting the Operating System
	Image Preparation
	Startup Process
	Loading the File System
	Loading the Device Manager

	Chapter 8 - Building Devices
	BSP Cloning
	Cloning a Component or a Project
	Automatic Application Launch at Startup
	Automatic Load of Drivers During the System Startup
	Device Power Management
	Device File System
	Device Registry
	Device Databases
	Device Plug and Play Messaging System
	Device System Shell
	Adding Files to the Device Image
	Creating File Shortcuts in the Device

	Chapter 9 - Application Development
	Native Code and Managed Code
	OS Design Subprojects and Separate Projects
	Building Applications as OS Design Subprojects
	Building Applications as Separate Projects
	Environment Preparation for Building Native Code Applications
	Environment Preparation for Building Managed Code Applications
	Connecting to the Device to Deploy and Debug Applications
	Determining the Device IP Address

	Chapter 10 - Testing Operating System Images
	Windows Embedded CE Test Kit
	Testing the Image with Support for KITL Enabled
	CETK Utilities
	Application Verifier
	CPU Monitor
	PerfToCsv
	Print Screen
	Windows Embedded CE Stress Tool

	Glossary
	References
	Resources
	Forums
	Blogs
	Newsgroups
	Books

	Index

