
Keith & Koep GmbH 5. August 2005
Using Interrupts on
Trizeps 4

Documentation 1.0

This document describes how to use IRQ’s to
map Interrupt-Sources to an Interrupt-
Service-Routine (ISR) or an Interrupt-
Service-Thread (IST).
1.0 Introduction

Real-time applications use interrupts to respond to external events in a timely man-
ner. The use of interrupts requires that an operating system (OS) balance perfor-
mance against ease of use. Microsoft Windows CE balances these two factors by
splitting interrupt processing into two steps: an interrupt service routine (ISR) and
an interrupt service thread (IST).

Each interrupt request (IRQ) is associated with an ISR; an ISR can respond to mul-
tiple IRQ sources. When interrupts are enabled and an interrupt occurs, the kernel
calls the registered ISR for that interrupt. Once finished, the ISR returns an inter-
rupt identifier. The kernel examines the returned interrupt identifier and sets the
associated event. When the kernel sets the event, the IST starts processing.

The exception handler is the primary target of all interrupts. When an interrupt
occurs, the microprocessor transfers control to an exception handler in the kernel.
The exception handler then calls the ISR registered to handle the current interrupt.
The ISR is responsible for translating the interrupt into a logical interrupt identifier,
a SYSINTR, which it passes to the kernel as its return value. The kernel sets an event
associated with the logical interrupt, which causes an interrupt service thread (IST)
to be scheduled. Code in the IST is responsible for servicing the device interrupt.
The IST runs in the context of a thread in Device Manager and is essentially a typi-
cal application thread running at a high priority.

(Taken from Windows CE 5.0 Platform-Builder Help „Interrupt Handling Process
Overview“)
1 von 9

Keith & Koep GmbH IRQ’s availlable on the Trizeps4
2.0 IRQ’s availlable on the Trizeps4

IRQs’s are used to assign every interrupt-source a unique number. If an interrupt-
event occurs, the processor will stop execution immediatly and jump to the excep-
tion-handler. The exception-handler will check which interrupt occured and will use
the irq-number of this interrupt to determine which ISR to call. The ISR will return
a SysIntr-Value, which may trigger an event to an IST.

There are two main IRQ-number-spaces.

1. System IRQ’s, which are assigned to the main PXA27x-components.
2. GPIO IRQ’s, which are assigned to the General-Purpose-IO-Pins.
Using Interrupts on Trizeps 4 2 von 9

Keith & Koep GmbH IRQ’s availlable on the Trizeps4
2.1 System IRQ-Numbers
View the Intel PXA27x Developer Manual on details regarding these interrupts.

TABLE 1. System IRQ-Numbers (defined in .\tr4conxs\src\inc\oalintr.h):

IRQ Description

0 Synchronous Serial Port 3
1 Mobile Scalable Link Interface (Baseband)
2 USB-Host (non OHCI)
3 USB-Host (OHCI)
4 Keypad
5 MemoryStick-Host Controller
6 Power I²C
7 Timer (currently not supported, internal system timer)
8 GPIO 0
9 GPIO 1
10 GPIO (not GPIO 0 or 1) (use special GPIO-IRQ’s instead)
11 USB Function Controller
12 Performance Monitor
13 Inter-IC Sound (I²S)
14 AC97
15 Universal Subscriber ID Interface (USIM)
16 Synchronous Serial Port 2
17 LCD Controller
18 I²C
19 Infrared Communication Port (ICP)
20 Standard-UART (COM3)
21 Bluetooth-UART (COM2)
22 Full-Function-UART (COM1)
23 SD/MMC Controller
24 Synchronous Serial Port 1
25 DMA Controller (Audio-driver)
26 Timer 0 (internal High-Res-Counter)
27 Timer 1 (Touch-Sample-Timer)
28 Timer 2 (CPLD-Matrix-Keyboard)
29 Timer 3
30 Real-Time Clock (1 Hz Tick)
31 Real-Time Clock (Alarm)
33 Camera Interface
Using Interrupts on Trizeps 4 3 von 9

Keith & Koep GmbH Mapping IRQ’s to Sysintr-Values
2.2 GPIO IRQ-Numbers
General-Purpose-Pins on the PXA27x-processor can be configured to cause inter-
rupts on edge-triggered events. The GPIO-interrupt-handler also enables the use of
level-triggered interrupts through software.

GPIO IRQ-Numbers are coded values, which contain the gpio-number, the events
causing the interrupt and some additional flags (view .\tr4conxs\src\inc\oalintr.h).

#define IRQ_TYPE 0xFF000000
#define IRQ_SYSTEM 0x00000000
#define IRQ_GPIO 0x01000000

// Defines for IRQ_GPIO
#define IRQ_GPIO_NUMBER 0x0000007F
#define IRQ_GPIO_FLAGS 0x00FFFF00
#define IRQ_GPIO_RISING 0x00000100
#define IRQ_GPIO_FALLING 0x00000200
#define IRQ_GPIO_HIGH 0x00000400
#define IRQ_GPIO_LOW 0x00000800

// For special cases, where you don't want to clear
// interrupt-detection during Interrupt and InterruptDone():
#define IRQ_NOCLEARFALLING 0x00001000
#define IRQ_NOCLEARRISING 0x00002000

Example:

IRQ = 0x0100020C

The upper 8 bits code the IRQ-Type: 0x01 => IRQ_GPIO.

The lower 7 bits code the GPIO-Number: 0x0C => GPIO 12.

The other bits code the interrupt-behaviour: 0x0002 => Interrupt on falling edge.

The special-flags IRQ_NOCLEARFALLING and IRQ_NOCLEARRISING may
be used to prevent the GPIO-interrupt-handler from disabling the interrupts for fall-
ing or rising edge interrupts. Normaly interrupts for a gpio are disabled in the inter-
rupt-handler and will be enabled again after a call to InterruptDone() (view
Platform-Builder Help).

3.0 Mapping IRQ’s to Sysintr-Values

Before using an IRQ in your software, you have to map it to a sysintr-value. There
are 64 sysintr-values availlabe in WinCE 5.0. About 25 are already mapped to driv-
ers.

A little sample-application named „irq_sample“ is availlable for download.
Using Interrupts on Trizeps 4 4 von 9

Keith & Koep GmbH Catching an Interrupt with an Interrupt-Service-Thread (IST)
3.1 IOCTL_HAL_REQUEST_SYSINTR

IRQ’s are mapped to a sysintr-value using the kernel-ioctl:
IOCTL_HAL_REQUEST_SYSINTR.

Example:

DWORD dwIrq = <IRQ-Number to map>;
DWORD dwSysIntr = <Variable receiving the mapped SysIntr-Value);
KernelIoControl(IOCTL_HAL_REQUEST_SYSINTR,

 &dwIrq,
 sizeof(DWORD),
 &dwSysIntr,
 sizeof(DWORD),
 NULL);

The KernelIoControl returns TRUE on success. FALSE indicates failure.

3.2 IOCTL_HAL_RELEASE_SYSINTR
If you should no longer need a sysintr-value previously assigned with
IOCTL_HAL_REQUEST_SYSINTR, call the kernel-ioctl:
IOCTL_HAL_RELEASE_SYSINTR.

Example:

DWORD dwSysIntr = <Variable containing the mapped SysIntr-Value);
KernelIoControl(IOCTL_HAL_RELEASE_SYSINTR,
 &dwSysIntr,
 sizeof(DWORD),
 NULL,
 0,
 NULL);

4.0 Catching an Interrupt with an Interrupt-Service-
Thread (IST)

The simplest way of catching interrupt-events in your application or in a driver is to
use an interrupt-service-thread. The IST is a normal thread, which waits for the
interrupt-event to occur through a call to WaitForSingleObject(...).

Unlike an ISR, which gets executed immidiatly after the interrupt occurs, the execu-
tion time of the IST is controlled through the scheduler, using a priority-sheme. You
can set the priority of your IST with a call to CeSetThreadPriority(..). Applications
run at a priority between 248 and 255, most drivers run at a priority around 100.
Avoid using a high priority (<100), especially if you poll for events or do large data-
processing. Threads running at low priority only get executed, if higher-priority-
threads are suspended (Sleep(..), WaitForSingleObject(..), WaitForMultipleOb-
ject(..),...) !!
Using Interrupts on Trizeps 4 5 von 9

Keith & Koep GmbH Running an Interrupt-Service-Routine (ISR) on Interrupts
4.1 Initialize the Interrupt-Event
Before using interrupts, you have to create an interrupt-event and assign it to a sys-
intr-value. Events are used to inform threads and the scheduler, that things have
happened.

1. Creating an interrupt-event:
HANDLE hInterrupt = <Handle to the Interrupt-Event>;
hInterrupt = CreateEvent(NULL, FALSE, FALSE, NULL);

2. Assigning a sysintr-value to an interrupt-event:
DWORD dwSysIntr = <Variable containing the Sysintr-Value>
InterruptInitialize(dwSysIntr, hInterrupt, NULL, NULL);

InterruptInitialize(..) will also enable the interrupt. From now on, the system will
signal interrupts to hInterrupt if they occur.

4.2 Waiting for the Interrupt-Event
You wait for an interrupt-event with a call to

WaitForSingleObject(hInterrupt, INFINITE);

WaitForSingleObject suspends the thread and will tell the scheduler to only wake it,
if hInterrupt gets signaled or on timeout. In this example the timeout-value is set to
INFINITE. You may also set it to a time in milliseconds. The return-value is
WAIT_OBJECT_0 if an interrupt occured, WAIT_TIMEOUT if the specified time-
out has been reached, or WAIT_FAILED if there was any kind of error.

4.3 Disabling the Interrupt-Event
If you no longer need to watch for the interrupt, you should call:

InterruptDisable(dwSysIntr);
CloseHandle(hInterrupt);

5.0 Running an Interrupt-Service-Routine (ISR) on
Interrupts

As already mentioned in Chapter 4, Interrupt-Service-Routines get called directly
after an interrupt-event occured. Any other processing is stopped, interrupts are
turned off and the only thing running will be your ISR. This also means, that those
routines should only do short, time-critical processing!

An ISR is a Dll which gets loaded into kernel-process-space through a call to Load-
IntChainHandler(..). This Dll can use the whole virtual-process-space of the kernel (
view .\tr4conxs\inc\memmap.inc). It is not allowed to be linked to other Dll’s and
must export following functions:

• CreateInstance (called on every call to LoadIntChainHandler).
• DestroyInstance (called on a call to FreeIntChainHandler).
• IOControl (called on a call to KernelLibIoControl).
• ISRHandler (called on every interrupt associated with this ISR).
Using Interrupts on Trizeps 4 6 von 9

Keith & Koep GmbH Running an Interrupt-Service-Routine (ISR) on Interrupts
To check wether your ISR exports the above functions, or uses other dll’s, you can
use depends.exe, which comes with Embedded Visual C++ (.\Programs\Microsoft
eMbedded C++ 4.0\Common\Tools\depends.exe)

A sample „isr_sample“ is availlable for download. It contains an application to load
an ISR and the ISR itself.

5.1 Writing an Interrupt-Service-Routine
View Platform-Builder-Help on details how to write an ISR.

If you write an ISR, don’t forget that you’re responsible for turning interrupts on
and off!

5.1.1 System-IRQ ISR
After a System-IRQ takes place, the interrupt-handler will run the ISR’s connected
to this IRQ (Yes, you may connect multiple ISR’s to one IRQ).

Your ISR may return these values:

• SYSINTR_CHAIN: Call the next ISR in the list.
• SYSINTR_NOP: Signal „no interrupt occured“ to the system (No more ISR’s

get called).
• SYSINTR_xxx: Signal an interrupt event, which can be catched through an

IST (No more ISR’s get called).

The default behaviour (;all your ISR’s return SYSINTR_CHAIN) is, that the inter-
rupt to this peripheral is disabled. It will be reenabled on a call to InterruptDone().

You may use the macro INTC_DISABLE(x) and INTC_DISABLE2(x) (defined in
INTCBits.h) to disable the interrupts in you ISR. Usage:

• INTC_DISABLE(1 << irq) for irq-numbers 0..31.
• INTC_DISBALE2(2) for irq 33 (camera interface).

5.1.2 GPIO-IRQ ISR
With exception of GPIO 0 and 1 (which both are treated as System-IRQ), all other
gpio’s use a special interrupt-handler. This is what the handler does on interrupt at
IRQ 10 (GPIO 2 to 120 share one System-IRQ):

1. Look for the GPIO, which caused the Interrupt.
2. Clear the responsible bit off the Edge-Detect-Status-Register (GEDR)
3. Clear Rising-Edge-Detect-Enable-Register (GRER) if IRQ_NOCLEARRISING

is not set.
4. Clear Falling-Edge-Detect-Enable-Register (GFER) if

IRQ_NOCLEARFALLING is not set.
5. Translate IRQ to SysIntr.
6. Call ISR’s.

If rising- or falling-edge-detect is cleared, you must reenable edge-detection in your
ISR or IST. View the isr_sample for details.
Using Interrupts on Trizeps 4 7 von 9

Keith & Koep GmbH Running an Interrupt-Service-Routine (ISR) on Interrupts
5.2 Loading an Interrupt-Service-Routine
An ISR is loaded with a simple call to LoadIntChainHandler(..).

Example:

HANDLE hIsrHandle = <Handle to the ISR; used for calls to KernelLibIoControl(.)
 and FreeIntChainHandler(.)>
DWORD dwSysIntr = <Number of the SysIntr-Value associated to the IRQ>

hIsrHandle = LoadIntChainHandler(TEXT("myisr.dll"),
 TEXT("ISRHandler"),
 (BYTE) dwSysIntr);

In this example, myisr.dll is the name of the ISR-Dll to load and ISRHandler is the
name of the function to call on interrupt.

The third parameter (dwSysIntr) is not used as described in the Microsoft-
Platform-Builder-Help. In the help it states, that the third parameter should be
bIRQ, the IRQ-number of the interrupt. In our Board-Support-Package, the third
value is the sysintr-value you retrieve when calling
IOCTL_HAL_REQUEST_SYSINTR.

5.3 Communication with an ISR
You can communicate with an ISR through KernelLibIoControl(..)-calls.

Example:

HANDLE hIsrHandle = <Handle returned by LoadIntChainHandler(..)>.
int Inbuf[10] = <Buffer containing data to ISR>
int Outbuf[10] = <Buffer getting data from ISR>

KernelLibIoControl(hIsrHandle ,
 IOCTL_xxx,
 InBuf,
 sizeof(InBuf),

 OutBuf,
 sizeof(OutBuf),
 lpBytesReturned)

5.4 Unloading an ISR
If you no longer use the ISR for an IRQ, you may free the instance with a call to
FreeIntChainHandler.

Example:

HANDLE hIsrHandle = <Handle returned by LoadIntChainHandler(..)>.

FreeIntChainHandler(hIsrHandle);

This function will call DestroyInstance(..) from your ISR-Dll.
Using Interrupts on Trizeps 4 8 von 9

Keith & Koep GmbH Using Interrupts to Wake the Module from Sleep
6.0 Using Interrupts to Wake the Module from Sleep

Some interrupts may be used to wake the Trizeps4-module from sleep.

You can set or remove a wakeup-source through KernelIoControls:

• IOCTL_HAL_ENABLE_WAKE
• IOCTL_HAL_DISABLE_WAKE

Example:

DWORD dwSysIntr = < SysIntr-value returned by
 IOCTL_HAL_REQUEST_SYSINTR; this is not the IRQ-
 value >

KernelIoControl(IOCTL_HAL_ENABLE_WAKE,
 &dwSysIntr, sizeof(dwSysIntr), NULL, 0, NULL);
KernelIoControl(IOCTL_HAL_DISABLE_WAKE,
 &dwSysIntr, sizeof(dwSysIntr), NULL, 0, NULL)

TABLE 2. Wakeup-Sources for Trizeps4 (view .\tr4conxs\src\inc\oalintr.h):

IRQ-Number Description

IRQ_USBOHCI USB-Host (OHCI)
IRQ_USBNONOHCI USB-Host (non-OHCI)
IRQ_RTCALARM Real-Time-Clock-Alarm
IRQ_USBFN USB-Slave
IRQ_GPIO0 GPIO 0
IRQ_GPIO1 GPIO 1
IRQ_GPIOXX_2
(If GPIO’s are listed in
one line, only one of them
may serve as wakeup-
source; view PXA27x-
Developer-Manual for
details).

GPIO 3
GPIO 4
GPIO 9
GPIO 10
GPIO 11
GPIO 12
GPIO 13
GPIO14
GPIO 15
GPIO 36, 38, 40, 53
GPIO 31, 113
GPIO 116 <USIM Card detect>
GPIO 35
GPIO 83 <MSL port>
Using Interrupts on Trizeps 4 9 von 9

	Using Interrupts on Trizeps 4
	1.0 Introduction
	2.0 IRQ’s availlable on the Trizeps4
	2.1 System IRQ-Numbers
	TABLE 1. System IRQ-Numbers (defined in .\tr4conxs\src\inc\oalintr.h):

	2.2 GPIO IRQ-Numbers

	3.0 Mapping IRQ’s to Sysintr-Values
	3.1 IOCTL_HAL_REQUEST_SYSINTR
	3.2 IOCTL_HAL_RELEASE_SYSINTR

	4.0 Catching an Interrupt with an Interrupt-Service- Thread (IST)
	4.1 Initialize the Interrupt-Event
	4.2 Waiting for the Interrupt-Event
	4.3 Disabling the Interrupt-Event

	5.0 Running an Interrupt-Service-Routine (ISR) on Interrupts
	5.1 Writing an Interrupt-Service-Routine
	5.1.1 System-IRQ ISR
	5.1.2 GPIO-IRQ ISR

	5.2 Loading an Interrupt-Service-Routine
	5.3 Communication with an ISR
	5.4 Unloading an ISR

	6.0 Using Interrupts to Wake the Module from Sleep
	TABLE 2. Wakeup-Sources for Trizeps4 (view .\tr4conxs\src\inc\oalintr.h):

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

