
i

Windows Embedded CE 6.0

Not for resale.

Certification Exam Preparation
Preparation Kit

Up to Date

with

R2 Content

CTSM
Exam 70-571

ii

Published by

Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. The information contained in this document
represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because
Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part
of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publica-
tion. Information in this document, including URL and other Internet Web site references, is subject to change with-
out notice.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmit-
ted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any pur-
pose, without the express written permission of Microsoft Corporation. Microsoft may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document.
Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does
not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Copyright © 2008 Microsoft Corporation. All rights reserved.

Microsoft, ActiveSync, IntelliSense, Internet Explorer, MSDN, Visual Studio, Win32, Windows, and Windows
Mobile are trademarks of the Microsoft group of companies. The names of actual companies and products men-
tioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos,
people, places and events depicted herein are fictitious, and no association with any real company, organization,
product, domain name, email address, logo, person, place or event is intended or should be inferred.

Acquisitions Editor: Sondra Webber, Microsoft Corporation

Authors: Nicolas Besson, Adeneo Corporation
Ray Marcilla, Adeneo Corporation
Rajesh Kakde, Adeneo Corporation

Writing Lead: Warren Lubow, Adeneo Corporation

Technical Reviewer: Brigette Huang, Microsoft Corporation

Editorial Production: Biblioso Corporation

Body Part No. 098-109627

iii

Contents at a Glance

Foreword . xi

Introduction . xiii

1 Customizing the Operating System Design . 1

2 Building and Deploying a Run-Time Image . 37

3 Performing System Programming . 81

4 Debugging and Testing the System . 145

5 Customizing a Board Support Package . 197

6 Developing Device Drivers . 241

Glossary . 309

Index . 313

About the Authors . 333

v

Table of Contents

Foreword . xi

Introduction . xiii
Intended Audience . xiv
Features of This Book . xiv

Hardware Requirements . xv
Software Requirements . xv
Notational Conventions . xvi
Keyboard Conventions . xvi
Notes . xvii

About the Companion CD-ROM . xvii
Microsoft Certified Professional Program . xviii
Technical Support . xviii

1 Customizing the Operating System Design . 1
Before You Begin . 1
Lesson 1: Creating and Customizing the Operating System Design . 3

Operating System Design Overview . 3
Creating an OS Design . 3
OS Design Customization with Catalog Components . 5
Build Configuration Management . 6
OS Design Property Pages . 6
Advanced OS Design Configurations . 10
Lesson Summary . 12

Lesson 2: Configuring Windows Embedded CE Subprojects . 13
Windows Embedded Subprojects Overview . 13
Creating and Adding Subprojects to an OS Design . 14
Configuring a Subproject . 16
Lesson Summary . 17

Lesson 3: Cloning Components . 18
Public Tree Modification and Component Cloning . 18
Cloning Public Code . 19
Lesson Summary . 20

Lesson 4: Managing Catalog Items . 21
Catalog Files Overview . 21
Creating and Modifying Catalog Entries . 22

vi Table of Contents

Catalog Component Dependencies . 24
Lesson Summary . 25

Lesson 5: Generating a Software Development Kit . 26
Software Development Kit Overview . 26
SDK Generation . 26
Installing an SDK . 28
Lesson Summary . 28

Lab 1: Creating, Configuring, and Building an OS Design . 29
Chapter Review . 34

Key Terms . 34
Suggested Practice . 34

2 Building and Deploying a Run-Time Image . 37
Before You Begin . 38
Lesson 1: Building a Run-Time Image . 39

Build Process Overview . 39
Building Run-Time Images in Visual Studio . 41
Building Run-Time Images from the Command Line . 46
Windows Embedded CE Run-Time Image Content . 46
Lesson Summary . 56

Lesson 2: Editing Build Configuration Files . 57
Dirs Files . 57
Sources Files . 59
Makefile Files . 61
Lesson Summary . 62

Lesson 3: Analyzing Build Results . 63
Understanding Build Reports . 63
Troubleshooting Build Issues . 65
Lesson Summary . 67

Lesson 4: Deploying a Run-Time Image on a Target Platform . 68
Choosing a Deployment Method . 68
Attaching to a Device . 71
Lesson Summary . 71

Lab 2: Building and Deploying a Run-Time Image . 72
Build a Run-Time Image for an OS Design . 72
Configure Connectivity Options . 73
Change the Emulator Configuration . 74
Test a Run-Time Image on the Device Emulator . 75

Chapter Review . 77
Key Terms . 78
Suggested Practice . 78

Table of Contents vii

3 Performing System Programming . 81
Before You Begin . 81
Lesson 1: Monitoring and Optimizing System Performance . 82

Real-Time Performance . 82
Real-Time Performance Measurement Tools . 84
Lesson Summary . 90

Lesson 2: Implementing System Applications . 91
System Application Overview . 91
Start an Application at Startup . 91
Windows Embedded CE Shell . 96
Windows Embedded CE Control Panel . 97
Enabling Kiosk Mode . 101
Lesson Summary . 102

Lesson 3: Implementing Threads and Thread Synchronization . 103
Processes and Threads . 103
Thread Scheduling on Windows Embedded CE . 103
Process Management API . 104
Thread Management API . 104
Thread Synchronization . 110
Troubleshooting Thread Synchronization Issues . 115
Lesson Summary . 117

Lesson 4: Implementing Exception Handling . 118
Exception Handling Overview . 118
Exception Handler Syntax . 120
Termination Handler Syntax . 121
Dynamic Memory Allocation . 121
Lesson Summary . 124

Lesson 5: Implementing Power Management . 125
Power Manager Overview . 125
Driver Power States . 127
System Power States . 127
Activity Timers . 128
Power Management API . 130
Power State Configuration . 134
Processor Idle State . 135
Lesson Summary . 136

Lab 3: Kiosk Mode, Threads, and Power Management . 138
Chapter Review . 143

Key Terms . 143
Suggested Practices . 144

viii Table of Contents

4 Debugging and Testing the System . 145
Before You Begin . 146
Lesson 1: Detecting Software-Related Errors . 147

Debugging and Target Device Control . 147
Kernel Debugger . 149
Debug Message Service . 149
Target Control Commands . 158
Debugger Extension Commands (CEDebugX) . 159
Advanced Debugger Tools . 161
Application Verifier Tool . 162
CeLog Event Tracking and Processing . 163
Lesson Summary . 166

Lesson 2: Configuring the Run-Time Image to Enable Debugging . 168
Enabling the Kernel Debugger . 168
KITL . 169
Debugging a Target Device . 171
Lesson Summary . 174

Lesson 3: Testing a System by using the CETK . 176
Windows Embedded CE Test Kit Overview . 176
Using the CETK . 178
Creating a Custom CETK Test Solution . 182
Analyzing CETK Test Results . 184
Lesson Summary . 185

Lesson 4: Testing the Boot Loader . 186
CE Boot Loader Architecture . 186
Debugging Techniques for Boot Loaders . 188
Lesson Summary . 189

Lab 4: System Debugging and Testing based on KITL,
Debug Zones, and CETK Tools . 190
Chapter Review . 195

Key Terms . 196
Suggested Practices . 196

5 Customizing a Board Support Package . 197
Before You Begin . 198
Lesson 1: Adapting and Configuring a Board Support Package . 199

Board Support Package Overview . 199
Adapting a Board Support Package . 201
Cloning a Reference BSP . 202
Implementing a Boot Loader from Existing Libraries . 205

Table of Contents ix

Adapting an OAL . 212
Integrating New Device Drivers . 217
Modifying Configuration Files . 218
Lesson Summary . 218

Lesson 2: Configuring Memory Mapping of a BSP . 219
System Memory Mapping . 219
Memory Mapping and the BSP . 224
Enabling Resource Sharing between Drivers and the OAL . 226
Lesson Summary . 227

Lesson 3: Adding Power Management Support to an OAL . 228
Power State Transitions . 228
Reducing Power Consumption in Idle Mode . 229
Powering Off and Suspending the System . 230
Supporting the Critical Off State . 232
Lesson Summary . 233

Lab 5: Adapting a Board Support Package . 234
Chapter Review . 238

Key Terms . 239
Suggested Practices . 239

6 Developing Device Drivers . 241
Before You Begin . 242
Lesson 1: Understanding Device Driver Basics . 243

Native and Stream Drivers . 243
Monolithic vs. Layered Driver Architecture . 244
Lesson Summary . 246

Lesson 2: Implementing a Stream Interface Driver . 247
Device Manager . 247
Driver Naming Conventions . 248
Stream Interface API . 250
Device Driver Context . 252
Building a Device Driver . 254
Opening and Closing a Stream Driver by Using the File API . 257
Dynamically Loading a Driver . 258
Lesson Summary . 259

Lesson 3: Configuring and Loading a Driver . 261
Device Driver Load Procedure . 261
Kernel-Mode and User-Mode Drivers . 268
Lesson Summary . 271

x Table of Contents

Lesson 4: Implementing an Interrupt Mechanism in a Device Driver 272
Interrupt Handling Architecture . 272
Interrupt Identifiers (IRQ and SYSINTR) . 276
Communication between an ISR and an IST . 279
Installable ISRs . 280
Lesson Summary . 282

Lesson 5: Implementing Power Management for a Device Driver . 283
Power Manager Device Drivers Interface . 283
Lesson Summary . 287

Lesson 6: Marshaling Data across Boundaries . 288
Understanding Memory Access . 288
Allocating Physical Memory . 290
Application Caller Buffers . 291
Using Pointer Parameters . 292
Using Embedded Pointers . 292
Handling Buffers . 293
Lesson Summary . 296

Lesson 7: Enhancing Driver Portability . 297
Accessing Registry Settings in a Driver . 297
Interrupt-Related Registry Settings . 298
Memory-Related Registry Settings . 299
PCI-Related Registry Settings . 299
Developing Bus-Agnostic Drivers . 300
Lesson Summary . 301

Lab 6: Developing Device Drivers . 302
Chapter Review . 306

Key Terms . 307
Suggested Practice . 307

Glossary . 309

Index . 313

About the Authors . 333
Nicolas Besson . 333
Ray Marcilla . 333
Rajesh Kakde . 334

xi

Foreword

It seems like yesterday that we released Windows CE 1.0 to the market, although 12
successful years have passed and many things have changed. New technologies have
emerged, while others have vanished; and we continue to push forward with our part-
ners to take full advantage of new hardware and software innovations. Windows
Embedded CE continues to evolve, yet remains a small-footprint, real-time, embedded
operating system that runs on multiple processor architectures and an amazing array
of devices, including robots, portable ultrasound imaging systems, industrial control-
lers, remote sensor and alarm systems, point-of-sale front-ends, media streamers,
game consoles, thin clients, and even devices most of us would never associate with
a Microsoft operating system. Perhaps one day Windows Embedded CE will run on
devices on the moon. It would not come as a surprise. Windows Embedded CE can be
everywhere that computer devices help to make life easier and fun.

Right from the start, we have focused on the needs of professional embedded devel-
opers by creating a comprehensive suite of development tools and by supporting
Windows programming interfaces and frameworks. We have integrated the Windows
Embedded CE development tools with Visual Studio 2005 to provide developers with
the freedom to customize the operating system and build the applications for the
operating system. Today, Windows Embedded CE 6.0 supports x86, ARM, MIPS and
SH4 processors out of the box, and includes approximately 700 selectable operating
system components. CE provides the tools needed to configure, build, download,
debug, and test operating system images and applications, ships with source code for
the kernel, device drivers, and other features, and gives application developers the
flexibility to create Win32, MFC, or ATL native code applications or managed appli-
cations based on the .NET Compact Framework. As part of the Microsoft Shared
Source Initiative, we ship more than 2.5 million lines of CE source code, which gives
developers the ability to view, modify, rebuild, and release the modified source. And
recently we launched a "Spark your Imagination" program to give hobbyist developers
access to hardware and CE software development tools at low costs.

You can find plenty of information about the CE operating system, development
tools, and concepts in this preparation kit for Microsoft Certified Technology Special-
ist (MCTS) Exam 70-571 “Microsoft Windows Embedded CE 6.0, Developing”
released in May 2008. We are very excited about Exam 70-571. It signifies another
important milestone in the Windows Embedded CE success story. Now, for the first

xii Foreword

time, embedded developers have the ability to assess and demonstrate their skills
regarding the development of embedded solutions based on Windows Embedded
technologies, and they can gain recognition for their knowledge and proficiency. Any-
body with a passion for CE 6.0 should consider taking the exam. We hope that this
book accelerates your preparation just as Windows Embedded CE 6.0 accelerates
your development processes. Best wishes from all of us here at the Microsoft develop-
ment team!

Mike Hall

Windows Embedded Architect
Microsoft Corporation

xiii

Introduction

Welcome to the Microsoft Windows Embedded CE 6.0 Exam Preparation Kit. The
purpose of this preparation kit is to help Windows Embedded CE developers prepare
for the Microsoft Certified Technology Specialist (MCTS) Windows Embedded CE
6.0 Application Development certification exam.

By using this preparation kit, you can maximize your performance on the following
exam objectives:

■ Customize the operating system design.

■ Clone Windows Embedded CE components and manage catalog items.

■ Generate a Software Development Kit (SDK).

■ Build a run-time image and analyze build results.

■ Deploy, monitor, and optimize a run-time image.

■ Develop multi-threaded system applications.

■ Implement exception handling.

■ Support power management in applications, device drivers, and in the OEM
adaptation layer (OAL).

■ Configure a Board Support Package (BSP), including customizations to boot
loader and memory mappings.

■ Develop full-featured stream interface drivers.

■ Implement Interrupt Service Routines (ISRs) and Interrupt Service Threads
(ISTs) and marshal data between kernel-mode and user-mode components.

■ Debug kernel-mode and user-mode components to eliminate software-related
errors.

■ Use the Windows Embedded CE Test Kit (CETK) to perform standard and user-
defined tests on a development workstation and on a target device.

■ Develop Tux extension components to include custom device drivers in CETK-
based tests.

xiv Introduction

Intended Audience
This Exam Preparation Kit is for system developers with a basic level of knowledge
about operating system design, programming system components, and debugging on
the Windows Embedded CE platform.

Specifically, this Preparation Kit is designed for readers with the following skills:

■ Basic knowledge of Windows and Windows Embedded CE development and
development

■ At least two years of experience with C/C++ programming and the Win32
Application Programming Interface (API).

■ Familiarity with Microsoft Visual Studio 2005 and Platform Builder for
Windows Embedded CE 6.0.

■ Basic debugging skills using standard Windows debugging tools.

MORE INFO Audience profile for Exam 70-571

For information about prerequisites to pass the certification exam, see the Audience Profile
section in the Preparation Guide for Exam 70-571 at http://www.microsoft.com/learning/exams
/70-571.mspx.

Features of This Book
Each chapter opens with a list of exam objectives covered in the chapter and a “Before
You Begin” section, which prepares you for completing the chapter. The chapters are
then divided into lessons. Each lesson begins with a list of objectives and states an
estimated lesson time. The lesson content is subdivided further according to topics
and lesson objectives.

Each chapter ends with hands-on procedures and a short summary of all chapter
lessons. This is followed by a brief check of key terms and suggested practices which
test your knowledge of the chapter material and help you successfully master the
exam objectives presented in the chapter.

� The hands-on examples give you an opportunity to demonstrate a particular concept
or skill and test what you have learned in the chapter lessons. All hands-on examples
include step-by-step procedures that are identified with a bullet symbol like the one to
the left of this paragraph. To help you successfully master the presented procedures,

Features of This Book xv

worksheets with detailed step-by-step instructions for each lab are also included in
the companion material for this book.

To complete the hands-on procedures, you must have a development computer with
Microsoft Windows XP or Microsoft Windows Vista, Visual Studio 2005 Service Pack 1,
and Platform Builder for Windows Embedded CE 6.0 installed.

Hardware Requirements
The development computer must have the following minimum configuration, with all
hardware on the Windows XP or Windows Vista Hardware Compatibility List:

■ 1 GHz 32-bit (x86) or 64-bit (x64) processor or faster.

■ 1 gigabyte (GB) of RAM.

■ 40 GB hard drive with at least 20 GB of available disk space for Visual Studio
2005 and Platform Builder.

■ DVD-ROM drive.

■ Microsoft Mouse or compatible pointing device.

■ Paging file set to twice the amount of RAM or larger.

■ VGA-compatible display.

Software Requirements
The following software is required to complete the procedures in this course:

■ Microsoft Windows XP SP2 or Windows Vista.

■ Microsoft Visual Studio 2005 Professional Edition.

■ Microsoft Windows Embedded CE 6.0.

■ Microsoft Visual Studio 2005 Professional Edition SP1.

■ Microsoft Windows Embedded CE 6.0 SP1.

■ Microsoft Windows Embedded CE 6.0 R2.

NOTE Trial versions of Visual Studio 2005 and Windows Embedded CE 6.0

Installation guidelines and evaluation versions of Visual Studio 2005 and Windows Embedded CE 6.0
are available on the Microsoft Website, at http://www.microsoft.com/windows/embedded/products
/windowsce/getting-started.mspx.

xvi Introduction

Notational Conventions
■ Characters or commands that you type appear in bold lowercase type.

■ <Angle brackets> in syntax statements indicate placeholders for variable
information.

■ Italic is used for book titles and Web addresses.

■ Names of files and folders appear in Title Caps, except when you are to type
them directly. Unless otherwise indicated, you can use all lowercase letters when
you type a file name in a dialog box or at a command prompt.

■ File name extensions appear in all lowercase.

■ Acronyms appear in all uppercase.

■ Monospace type represents code samples, examples of screen text, or entries
that you might type at a command prompt or in initialization files.

■ Square brackets [] are used in syntax statements to enclose optional items. For
example, [filename] in command syntax indicates that you can choose to type a
file name with the command. Type only the information within the brackets, not
the brackets themselves.

■ Braces { } are used in syntax statements to enclose required items. Type only the
information within the braces, not the braces themselves.

Keyboard Conventions
■ A plus sign (+) between two key names means that you must press those keys at

the same time. For example, “Press ALT+TAB” means that you hold down ALT
while you press TAB.

■ A comma (,) between two or more key names means that you must press each
of the keys consecutively, not together. For example, “Press ALT, F, X” means
that you press and release each key in sequence. “Press ALT+W, L” means that
you first press ALT and W together, and then release them and press L.

■ You can choose menu commands with the keyboard. Press the ALT key to
activate the menu bar, and then sequentially press the keys that correspond to
the highlighted or underlined letter of the menu name and the command name.
For some commands, you can also press a key combination listed in the menu.

About the Companion CD-ROM xvii

■ You can select or clear check boxes or option buttons in dialog boxes with the
keyboard. Press the ALT key, and then press the key that corresponds to the
underlined letter of the option name. Or you can press TAB until the option is
highlighted, and then press the spacebar to select or clear the check box or
option button.

■ You can cancel the display of a dialog box by pressing the ESC key.

Notes
Several types of Notes appear throughout the lessons.

■ Notes marked Tip contain explanations of possible results or alternative
methods.

■ Notes marked Important contain information that is essential to completing a
task.

■ Notes marked Note contain supplemental information.

■ Notes marked Caution contain warnings about possible loss of data.

■ Notes marked Exam Tip contain helpful hints about exam specifics and
objectives.

About the Companion CD-ROM
The Companion CD contains a variety of informational aids that may be used
throughout this book. This includes worksheets with detailed step-by-step
instructions and source code used in hands-on exercises, as well as complimentary
technical information and articles from the Microsoft developers.

An electronic version (eBook) of this book is included with a variety of viewing
options available. The Companion CD also contains a complete set of post-press files
for this official self-paced study guide to produce a printed book. The post-press files
are in Portable Document Format (PDF) and have the required crop marks for
professional printing and binding.

xviii Introduction

Microsoft Certified Professional Program
The Microsoft Certified Professional (MCP) program provides the best method to
prove your command of current Microsoft products and technologies. The exams and
corresponding certifications are developed to validate your mastery of critical
competencies as you design and develop, or implement and support, solutions with
Microsoft products and technologies. Computer professionals who become Microsoft
certified are recognized as experts and are sought after industry-wide. Certification
brings a variety of benefits to the individual, employers, and organizations.

MORE INFO All the Microsoft certifications

For a full list of Microsoft certifications, go to http://www.microsoft.com/learning/mcp/default.asp.

Technical Support
Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. If you have comments, questions, or ideas regarding Windows
Embedded CE development, contact a Windows Embedded CE specialist through
Microsoft Product Support Services (PSS), Microsoft Developer Network (MSDN), or
the following blog sites:

■ Nicolas BESSON's Weblog Contact the principal author of the Windows
Embedded CE 6.0 Exam Preparation Kit with feedback and subject suggestions
for new articles related to those subjects at http://nicolasbesson.blogspot.com.

■ Windows Embedded Blog Read about Mike Halls tricks, tips, and random
thoughts on Windows Embedded at http://blogs.msdn.com/mikehall/
default.aspx.

■ Windows CE Base Team Blog Get background information about Windows
Embedded CE kernel and storage technologies and system tools directly from
the Microsoft developers at http://blogs.msdn.com/ce_base/default.aspx.

MORE INFO Windows Embedded CE product support

For detailed information about all available Windows Embedded CE product support options, go
to http://www.microsoft.com/windows/embedded/support/products/default.mspx.

1

Chapter 1

Customizing the
Operating System Design

Whenever you want to deploy Windows® Embedded CE 6.0 R2 on a target device,
you must use a run-time image that includes the necessary operating system (OS)
components, features, drivers, and configuration settings. The run-time image is the
binary representation of the OS design. You can use Microsoft® Platform Builder for
Windows Embedded CE 6.0 to create or customize an OS design and generate the
corresponding run-time image. For each OS design, you typically create a new devel-
opment project in Microsoft® Visual Studio® 2005 and include only the necessary
components for your target device and applications. This helps to reduce the footprint
of the operating system and to lower hardware requirements. However, in order to
generate compact and functional run-time images, you must have an intimate under-
standing of Platform Builder, including the user interface (UI), the catalog compo-
nents, and the specifics of the build procedure. This chapter covers these aspects by
explaining how to create an OS design and generate a new Windows Embedded CE
run-time image.

Exam objectives in this chapter:

■ Creating and customizing OS designs

■ Configuring Windows Embedded CE subprojects

■ Cloning components

■ Managing catalog items

■ Generating a Software Development Kit (SDK)

Before You Begin
To complete the lessons in this chapter, you must have the following:

■ At least some basic knowledge about Windows Embedded CE software develop-
ment.

2 Chapter 1 Customizing the Operating System Design

■ A basic understanding of the directory structure and build process of Platform
Builder for Windows Embedded CE 6.0 R2.

■ Familiarity creating binary Windows Embedded CE run-time images and down-
loading run-time images to target devices.

■ Experience using an SDK to develop applications for Windows Embedded CE.

■ A development computer with Microsoft Visual Studio 2005 Service Pack 1 and
Platform Builder for Windows Embedded CE 6.0 installed.

Lesson 1: Creating and Customizing the Operating System Design 3

Lesson 1: Creating and Customizing the
Operating System Design

You can use Platform Builder in Visual Studio 2005 to create an OS design with as
many or as few of the features available in Windows Embedded CE 6.0 R2 as you find
necessary for your specific purpose. For example, you can create an OS design for a
particular target device, such as a portable multimedia device, and another OS design
for a remotely programmable wireless-enabled digital thermostat. These two target
devices might rely on the same hardware, but the purposes of the devices are different
and so are the corresponding OS design requirements.

After this lesson, you will be able to:

■ Understand the role and specifics of an OS design.

■ Create, customize, and use OS designs.

Estimated lesson time: 30 minutes.

Operating System Design Overview
The OS design defines the components and features contained in a run-time image.
Essentially, it corresponds to a Visual Studio with Platform Builder for Windows
Embedded CE 6.0 R2 project. The OS design can contain any or all of the following
elements:

■ Catalog items, including software components and drivers

■ Additional software components in the form of subprojects

■ Custom registry settings

■ Build options, such as for localization or debugging based on Kernel Indepen-
dent Transport Layer (KITL)

Additionally, every OS design contains a reference to at least one Board Support Pack-
age (BSP) with device drivers, hardware-specific utilities, and an OEM adaptation
layer (OAL).

Creating an OS Design
Windows Embedded CE includes an OS Design Wizard, which, as the name suggests,
provides a convenient way to create OS designs. To launch it, start Visual Studio 2005
with Platform Builder for Windows Embedded CE 6.0 R2, open the File menu, then

4 Chapter 1 Customizing the Operating System Design

point to New, and then click Project to display the New Project dialog box. In this dialog
box, under Project Types, select Platform Builder for CE 6.0; and under Visual Studio
Installed Templates, select OS Design, enter a name for the OS design in the Name field,
and then click OK to start the Windows Embedded CE 6.0 OS Design Wizard.

The OS Design Wizard enables you to select a BSP and a design template with com-
monly used options and preselected catalog components. Any settings that you spec-
ify within the wizard you can also modify later, so don’t worry about the individual
settings too much for now. Depending on the template that you select on the Design
Templates page, the OS Design Wizard might display an additional Design Template
Variants page with more specific options related to the selected template. For exam-
ple, Windows Thin Client, Enterprise Terminal, and Windows Network Projector are
all devices that use the Remote Desktop Protocol (RDP) and are therefore variants of
the same Thin Client design template. Depending on the selected template and vari-
ant, the OS Design Wizard might display additional pages to include specific compo-
nents in the OS design, such as ActiveSync®, WMV/MPEG-4 video codec, or IPv6.

The OS Design Template
A CE 6.0 OS design template is a subset of the catalog components required to use
Windows Embedded CE for a particular purpose. It is not necessary to start from a
template when creating a new OS design, although it can save a significant amount of
time to do so. It is straightforward to change catalog components later by selecting
them in the Catalog Items View.

Choosing an appropriate template can save you development time and effort. For
example, you might have to demonstrate the features of a new development board at a
trade show. In this case, it is a good idea to start with the PDA Device or Consumer Media
Device design template and add the required components and common Windows
applications in the OS Design Wizard, such as the .NET Compact Framework 2.0,
Internet Explorer®, and WordPad. On the other hand, if you are developing a driver
for a Controller Area Network (CAN) controller, it might be better to start with the
Small Footprint Device design template and only add what’s absolutely necessary to
minimize the size of the run-time image and to keep startup times at a minimum.

The OS Design Wizard is flexible and supports custom design templates. Template
f iles are Extensible Markup Language (XML) documents, located in the
%_WINCEROOT%\Public\CEBase\Catalog folder. You can start with a copy of an
existing Platform Builder Catalog XML (PBCXML) file and modify the PBCXML
structures according to your specific needs. Platform Builder automatically enumer-

Lesson 1: Creating and Customizing the Operating System Design 5

ates all .pbcxml files in the Catalog folder when you start Visual Studio or refresh the
Catalog Items View in Visual Studio.

OS Design Customization with Catalog Components
After completing the OS Design Wizard, it is straightforward to customize the OS
design. The catalog is a repository for all the components that can be added to an OS
design. It is accessible directly from within the integrated development environment
(IDE). Click Catalog Items View in the Solution Explorer window pane. Almost every
CE feature is divided into separate user-selectable catalog components, from
ActiveSync to TCP/IP. You can select these components directly in the UI. Each
catalog item is a reference to all the components necessary to build and integrate a
feature into the run-time image.

When you add a catalog item that depends on other catalog items, you implicitly add
these items as dependencies to the OS design as well. The Catalog Items View shows
these items with a green square in the check box to indicate that they are part of the
OS design due to existing dependencies. In contrast, the Catalog Items View shows
manually selected items and items included based on a design template with a green
check mark.

In the Catalog Items View, you can show all catalog components or enable a filter to
display only selected catalog items. Click the downward arrow on the Filter button in
the top left corner of the Catalog Items View in Solution Explorer to apply a filter or
select the option All Catalog Items in the catalog to display the complete list of catalog
items.

Figure 1-1 Catalog Items View with the search box and Catalog Item Dependencies window

Provided that you know the name of the catalog item or the SYSGEN variable a
component sets, you might find it more convenient and faster to search for the desired

6 Chapter 1 Customizing the Operating System Design

catalog item that you want to add or remove than to look for it manually. To search by
item name or SYSGEN variable, type the search term into the text box at the top of the
Catalog Items View and click the green arrow next to it.

To analyze the dependencies of a catalog item, you can right-click the item and select
Show Dependencies to display the Catalog Item Dependencies window, as illustrated
in Figure 1-1. For example, you can use this feature to see the reason for the inclusion
of a specific catalog item as a dependency. In CE 6.0 R2, Platform Builder dynamically
traverses the catalog to enumerate all components that depend on the selected item
as well as all components that this item depends on.

Build Configuration Management
Windows Embedded CE supports multiple build configurations that you can modify
separately. The two standard configurations are Release and Debug. These build con-
figurations are automatically available when you create an OS design. In the Debug
build configuration, the compiler generates debug information, maintains links to the
source code in program database (.pdb) files, and, to facilitate debugging and step-by-
step code execution, does not optimize the code. Windows Embedded CE run-time
images compiled in Debug build configuration are generally 50 percent to 100 per-
cent larger than images compiled by using the Release configuration. To choose a
build configuration, open the Build menu in Visual Studio, click Configuration
Manager, and then, in the Configuration Manager dialog box, select the desired build
configuration under Active Solution Configuration. You can also select the desired
build configuration by using the pull-down menu in the Standard toolbar.

OS Design Property Pages
For each build configuration, it is possible to configure a number of project proper-
ties, such as the locale, whether or not to include KITL, custom build actions, inclu-
sion of subprojects in the binary image, and custom SYSGEN variables. To access
these options, display the Property Pages dialog box by right-clicking the OS design
node in Solution Explorer and selecting Properties. The OS design node is the first
child object under the Solution top-level node. The caption corresponds to the project
name, such as OSDesign1. If Solution Explorer is not visible, open the View menu and
click Solution Explorer, and if Solution Explorer currently displays the Catalog Items
View or the Class View, click the Solution Explorer tab to display the solution tree.

Lesson 1: Creating and Customizing the Operating System Design 7

TIP Setting properties for multiple configurations

In the top left corner of the Property Pages dialog box, you can find a list box to select the build
configuration. Among other options, you can select All Configurations or Multiple Configura-
tions. These options are useful if you want to set properties for multiple build configurations at
the same time.

Locale Options
In the Property Pages dialog box, under Configuration Properties, you can find the
Locale node, which enables you to configure language settings for the Windows
Embedded CE image, as illustrated in Figure 1-2. For most languages, the Locale
property page covers all requirements to localize the OS design, but some languages,
particularly East Asian languages such as Japanese, require additional catalog com-
ponents. It is also important to note that some catalog components related to inter-
nationalization significantly increase the size of the run-time image.

Figure 1-2 Locale property page

The Locale property page enables you to configure the following options for the run-
time image:

■ Locales Selects the languages that will be available to localize the run-time
image. If a selected language has a default ANSI and OEM code page, the code
page is automatically added to the OS design, as indicated by a marked corre-
sponding code page entry in the Codepages list.

8 Chapter 1 Customizing the Operating System Design

■ Default Locale Defines the default locale for the OS design. The default
language is English (United States), which uses the default code page 437
(OEM-United States).

■ Code Pages Specifies the ANSI and OEM code pages that will be available in the
OS design.

■ Localize The Build Instructs the build process to use localized string and image
resources. Platform Builder performs the localization of the OS design during the
make image step of the OS design build process. Localized resource files are inte-
grated inside the binary files for the common components, through res2exe.

■ Strict Localization Checking In The Build Causes the build process to fail if
localization resources are missing, rather than just using the resources based on
the default locale.

Build Options

Directly under the Locale node in the Property Pages dialog box, you can find the
Build Options node, which enables you to control event tracking, debugging, and
other build options for the active OS design, as illustrated in Figure 1-3.

Figure 1-3 Build Options property page

Lesson 1: Creating and Customizing the Operating System Design 9

The Build Options property page enables you to configure the following options for
the run-time image:

■ Buffer Tracked Events In RAM Causes Platform Builder to include
OSCapture.exe in the CE image. Also enables logging of operating system
events tracked by OSCapture.exe in RAM so they can be flushed to a file and
viewed later.

■ Enable Eboot Space In Memory Enables the Ethernet boot loader (EBOOT) to
pass data to the Windows Embedded CE OS at start time.

■ Enable Event Tracking During Boot Enables CE event log data collection much
earlier during the start process than it would normally be collected otherwise. If
you activate this option, event tracking starts before most of the kernel and file
system initialization is complete.

■ Enable Hardware-Assisted Debugging Support This is required for some third-
party hardware debugging tools (JTAG probes compliant with exdi2).

■ Enable Kernel Debugger Enables the Windows Embedded CE debugger so you
can step through the code in the run-time image. Kernel debugging requires KITL
to communicate with Platform Builder at run time.

■ Enable KITL Adds KITL to the run-time image. KITL is a useful debugging
feature that enables developers to use the kernel debugger, interact with the
remote device’s file system, registry, and other components, as well as run code.
You should not include KITL in the final build of the operating system, because it
introduces overhead and wastes time during the start process trying to connect to
a host computer.

■ Enable Profiling Enables the kernel profiler in the run-time image, which you
can use to collect and view timing and performance data. The kernel profiler is a
useful tool for optimizing the performance of Windows Embedded CE on a target
device.

■ Flush Tracked Events To Release Directory Adds CeLogFlush.exe to the run-
time image, which automatically flushes log data collected by OSCapture.exe to
the Celog.clg file in the release directory on the development computer.

■ Run-Time Image Can Be Larger Than 32 MB Enables you to build a larger-than-
32-MB image. However, you should not use this option if you want to build an
image larger than 64 MB. In this case, you must set an environment variable for
the appropriate size (such as IMGRAM128).

10 Chapter 1 Customizing the Operating System Design

■ Use Xcopy Instead Of Links To Populate Release Directory Creates actual
copies of the files by using xcopy rather than copylink. Copylink might only
create hard links to the files rather than copying them, and it requires the NTFS
file system on the development computer.

■ Write Run-Time Image To Flash Memory Instructs EBOOT to write the
run-time image to the flash memory of the target device.

Environment Options
The Property Pages dialog box provides an Environment option to configure environ-
ment variables that will be used during the build process. You can enable most
features in Windows Embedded CE 6.0 R2 by using catalog components, but for
some options you need to set a SYSGEN variable so that Platform Builder compiles
the necessary code and includes it in the run-time image. Setting environment
variables that influence the build process can be helpful when developing a BSP.
Environment variables are accessible during the Windows Embedded CE build
process from the command line. You can also use environment variables to specify
flexible information in the sources, binary image builder (.bib), and registry (.reg) files.

TIP If it works in Debug but not in Release

If you can build a run-time image in the Debug configuration, but not in the Release configura-
tion, display the Property Pages dialog box, select All Configurations from the Configuration list
box, and then select the Environment option to set the environment variables for both Debug
and Release to the same values.

Advanced OS Design Configurations
This section covers several advanced topics related to OS designs. Specifically, this
section explains how to support multiple platforms with the same OS design and
discusses the file locations and file types that an OS design typically includes.

Associating an OS Design with Multiple Platforms

When creating a new OS design project by using the OS Design Wizard, you can
select one or more BSPs on the Board Support Packages wizard page. By associating
an OS design with multiple BSPs, you can generate separate run-time images with
identical content for multiple platforms. This is particularly useful in projects that
include multiple development teams, especially if the final target hardware is cur-
rently not available. For example, you can generate a run-time image for an emulator-

Lesson 1: Creating and Customizing the Operating System Design 11

based platform so that the application development team can start before the final
hardware is available. In terms of OS functionality, the application development team
can use the application programming interfaces (APIs) before the final target platform
is available. The APIs will be included in the final target because the two run-time
images share the same set of components and configuration settings.

You can also add support for multiple platforms to an OS design after the initial creation.
All you need to do is select the corresponding check boxes under BSP in the Catalog Items
View of Solution Explorer. Selecting a BSP automatically adds the additional platform to
the configuration for Release and Debug. You can then switch between the different plat-
forms and build configurations by using Configuration Manager, which is available on the
Build menu in Visual Studio. However, it is necessary to run the entire build process,
including the time-consuming SYSGEN phase, for each platform individually.

OS Design Paths and Files
In order to use and redistribute your OS designs, you need to know exactly what files
constitute an OS design and where they are located on your development computer.
By default, you can find the OS designs in the %_WINCEROOT%\OSDesigns direc-
tory. Each project corresponds to a separate child directory. OS designs typically cor-
respond to the following file and directory structure:

■ <Solution Name> The parent directory that Visual Studio created for the project.

■ <Solution Name>.sln The Visual Studio solution (.sln) file to store settings
specific to the OS design project. The file name is generally the same as that of
your OS design.

■ <Solution Name>.suo The Visual Studio solution user options (.suo) file,
which contains user-dependent information, such as the state of the Solution
Explorer views. The file name is generally the same as your OS design.

■ <OS Design Name> The parent directory for the remaining files included in
the OS design project.

● <OS Design Name>.pbxml Your OS design’s catalog file. This file
contains references to selected catalog components and all the settings
related to your OS design.

● Subprojects This directory includes a separate subfolder for each
subproject created as part of the OS design.

● SDKs This directory includes the Software Development Kits (SDKs)
created for the OS design.

12 Chapter 1 Customizing the Operating System Design

● Reldir This is the release directory. Platform Builder copies the files into
this directory during the process of creating the run-time image that can
then be downloaded to a target device.

● WinCE600 This is where files are copied after the Sysgen phase is com-
plete, including resource files and configuration files for the current OS
design.

Source Control Software Considerations
Basically, an OS design is a set of configuration files for Platform Builder to generate
a Windows Embedded CE run-time image. If you are using source control software to
coordinate the work of your development team, you only have to store these configu-
ration files in your source control repository. You do not need to include any files from
the CESysgen folder (used during the build process of the run-time image) or Reldir
directories, because they can be reconstituted on any workstation with Platform
Builder and the BSP installed. Also, omit files ending in .user or .suo because those are
user-specific settings for the IDE, and omit .ncb files because these files only contain
IntelliSense® data.

Lesson Summary
Platform Builder for Windows Embedded CE 6.0 R2 includes an OS Design Wizard to
help you accomplish the basic OS design creation steps quickly and conveniently. You
can select one or multiple BSPs to include all hardware-specific device drivers and
utilities for your target platform and a design template with possible template variants
to include additional catalog items. After completing the OS Design Wizard, you can
further customize the OS design. You can exclude unnecessary catalog items, include
additional components, and configure project properties such as the Debug and
Release build options. In the Debug build configuration, Platform Builder includes
debug information in the run-time image, which leads to an increase of 50 percent to
100 percent in comparison to Release builds. However, Debug builds facilitate debug-
ging and step-by-step code execution during the development process. Because you
can configure Debug and Release build options separately, you might encounter a
situation in which your OS design compiles in the Debug configuration but not in the
Release configuration. In this case, it can be helpful to set environment variables in
both Debug and Release to the same values. In order to distribute your OS designs,
you need to locate the source f iles, which you can f ind by default in the
%_WINCEROOT%\OSDesigns directory. You can use source control software to
coordinate the work of a development team.

Lesson 2: Configuring Windows Embedded CE Subprojects 13

Lesson 2: Configuring Windows Embedded CE Subprojects
A subproject is a Visual Studio project inserted into a parent project to include rela-
tively independent components in an overall solution. In our case, the parent project
typically corresponds to an OS design. Subprojects can take the following forms:

■ An application (managed or unmanaged).

■ A dynamic-link library (DLL).

■ A static library.

■ An empty project containing only configuration settings.

Subprojects are a good way to include a particular application, device driver, or other
code module in an OS design and to maintain this code and the OS design together
as one solution.

After this lesson, you will be able to:

■ Create and configure subprojects.

■ Build and use subprojects.

Estimated lesson time: 20 minutes.

Windows Embedded Subprojects Overview
Platform Builder for Windows Embedded CE enables you to create subprojects as
part of an OS design. Because subprojects are both modular and easily redistribut-
able, they provide a convenient way to add applications, drivers, or other files to your
OS design without manually including them in the build tree as part of the BSP. You
can also create subprojects for internal test applications and development tools to
make it quick and easy to build these tools and run them on a test device.

Types of Subprojects

Windows Embedded CE supports the following subproject types:

■ Applications Win32® applications with a graphical user interface (GUI),
programmed in C or C++.

■ Console applications Win32 applications without a GUI, programmed in C or
C++.

14 Chapter 1 Customizing the Operating System Design

■ Dynamic-link library (DLL) Drivers or other code libraries, loaded and used at
run time.

■ Static library Code modules in the form of library (.lib) files that you can link
to from other subprojects or export as part of the OS design’s SDK.

■ TUX dynamic-link library Windows Embedded CE custom test components
for the Microsoft Windows CE Test Kit (CETK), as explained in more detail in
Chapter 4.

Creating and Adding Subprojects to an OS Design
It is straightforward to create a new subproject or add an existing project as a sub-
project to an OS design. For the most part, you can use the Windows Embedded CE
Subproject Wizard to accomplish this task, which you can start by right-clicking the
Subprojects folder in Solution Explorer and clicking Add New Subproject or Add Exist-
ing Subproject. However, an understanding of the details, including the purpose of the
various subproject types, the files and settings created by the CE Subproject Wizard,
the build process, and customization possibilities for subprojects, is still helpful.

The CE Subproject Wizard creates a subfolder in the OS design folder, which contains
all the required configuration files, including:

■ <Name>.pbpxml An XML-based file that contains metadata information about
the subproject. This file references the .bib, .reg, sources, and dirs files to build the
subproject.

■ <Name>.bib A binary image builder (.bib) file used during the makeimg step in
the build process to dictate files to include in the binary image.

■ <Name>.reg A registry file with settings to be included in the final run-time
image.

■ Sources A Windows Embedded CE sources file. This is a makefile that contains
build options to control the Windows Embedded CE build process.

■ Makefile A file used in association with the sources file in the Windows Embedded
CE build process.

To make a copy of a subproject for later use, open your OSDesigns folder
(%_WINCEROOT%\OSDesigns), and then open the solution folder for your OS
design. The solution folder typically contains the <OS Design Name>.sln file and a folder
named according to the OS design. Within this folder, you can find the definition file of
the OS design <OS Design Name>.pbxml and several subdirectories. One of these sub-

Lesson 2: Configuring Windows Embedded CE Subprojects 15

directories should be your Subproject folder, as illustrated in Figure 1-4. It is a good idea
to back up this folder. You can then add it to any OS design later by right-clicking the
Subprojects container in Solution Explorer and selecting Add Existing Subproject.

Figure 1-4 A subproject folder in an OS design project

Creating Windows Embedded CE Applications and DLLs
To add a Windows Embedded CE application or DLL to an OS design, use the CE
Subproject Wizard to create the corresponding subproject. Although you can start
with an empty subproject, it is generally more convenient to select a simple console or
GUI application template, adding your own code afterward as necessary.

Creating Static Libraries
The CE Subproject Wizard also provides you with an option to create a static library,
which you can then link to another subproject or export as part of an SDK. This is
helpful for dividing up more sophisticated subprojects or providing more options to
application developers who develop solutions for your hardware and firmware. If
other subprojects in your OS design rely on a static library, you might have to adjust
the build order of the subprojects to use the library efficiently. For example, if a Win-
dows Embedded CE application uses your static library, you should build the library
first so that the application build process uses the updated library.

16 Chapter 1 Customizing the Operating System Design

Creating a Subproject to Add Files or Environment Variables
to a Run-Time Image
Some subprojects do not necessarily include source code. For example, you can create
an empty subproject by using the CE Subproject Wizard, modify the sources file, and
set TARGETTYPE=NOTARGET to indicate you do not want to generate binary target
files. You can then add files to the run-time image by adding corresponding references
to the subproject’s .bib file. You can also add registry settings to the subproject’s .reg
file and you can add SYSGEN variables by editing the subproject’s Projsysgen.bat file.
Although it is generally faster and more convenient to modify the .reg and .bib files
and project properties of the OS design directly, creating a subproject for this purpose
can be advantageous if you are planning to reuse customizations in multiple OS
designs in the future.

Configuring a Subproject
Visual Studio provides a number of options in the project properties that you can con-
figure to customize the build process for subprojects. To configure these settings, dis-
play the Property Pages dialog box for your OS design, as explained earlier in this
chapter. You can then find the subproject properties under Subproject Image Settings.
For each subproject added or created in the current OS design, you can configure the
following parameters:

■ Exclude From Build Activating this option excludes the subproject from the
build process of the OS design, meaning the build engine does not process the
source files that belong to the selected subproject.

■ Exclude From Image Sometimes it can be time-consuming to deploy a run-time
image when subprojects change. You have to disconnect from the target platform,
rebuild the project, create a new image, reconnect to the target platform, and
download the updated image every time a change is made with a subproject. To
save time and effort when working on a subproject, you should exclude it from
the run-time image by using the Exclude From Image option. In this case, you
should also create a way to update the file on the device at run time through
KITL, ActiveSync, or any other way you can transfer it to the device.

■ Always Build And Link As Debug By using this option, you build the subproject
in Debug build configuration while your current OS design build process uses
the Release configuration. In this way, you can debug the subproject code by
using the Kernel Debugger while the operating system is running in the Release
version (this option will not automatically enable the Kernel Debugger).

Lesson 2: Configuring Windows Embedded CE Subprojects 17

NOTE Exclusion from the run-time image

When you exclude a subproject from the run-time image, you implicitly exclude the subproject’s
files from the Nk.bin file that is downloaded to the target device. Instead, Windows Embedded
CE accesses the subproject’s files on an as-needed basis directly from the Release directory over
KITL (when KITL is enabled). This means that you can modify the code in a driver or application
subproject without having to redeploy the run-time image. You should only need to verify that
the remote device is not currently running the code, and then you can rebuild the code and run
it again.

Lesson Summary
You can use Windows Embedded CE subprojects to add applications, drivers, DLLs,
and static libraries to an OS design, which is useful if you want to manage a complex
Windows Embedded CE development project that includes a large number of appli-
cations and components. For example, you can include a custom shell application or
a device driver for a USB peripheral in the form of a subproject to an OS design, and
then have different development teams implement these components. You can also
use Windows Embedded CE subprojects to add registry settings, environment
variables, or specific files to various OS designs, such as the run-time files for the Core
Connectivity (CoreCon) interfaces or a test application. It is possible to back up
subprojects individually and add them as existing subprojects to future OS designs.

18 Chapter 1 Customizing the Operating System Design

Lesson 3: Cloning Components
Platform Builder for Windows Embedded CE 6.0 R2 comes with public source code
that you can reuse and adapt for various purposes. You can analyze and modify the
source code for most of the components included in Windows Embedded CE, from
the shell to the serial driver’s model device driver (MDD) layer. However, you must
not modify the public source code directly. Instead, create a functional copy of the
public code so that you can modify the desired components without affecting the
original Windows Embedded CE 6.0 R2 code base.

After this lesson, you will be able to:

■ Identify components to clone.

■ Clone an existing component.

Estimated lesson time: 15 minutes.

Public Tree Modification and Component Cloning
Once you have discovered that the code you want to modify resides in the
%_WINCEROOT%\Public folder, you might be tempted to modify this code in place
and then build it without moving it to another folder first. However, there are a num-
ber of reasons not to modify the Public tree:

■ You have to back up the Public directory and maintain separate directory ver-
s io ns fo r each o f yo ur OS d es ign pro jec t s , such as WINC E600
\PUBLIC_Company1, WINCE600\PUBLIC_Company2, and WINCE600
\PUBLIC_Backup.

■ Windows Embedded CE updates, patches provided by quick fix engineering
(QFE), and service packs might overwrite or be incompatible with your modifi-
cations.

■ Redistributing your code is difficult and error-prone.

■ Worst of all, when you change code in the Public directory tree, you have to spend
up to three hours building the operating system. If you already know the CE
build process so well that you can rebuild just your particular code without
having to rebuild the entire Public folder, you will also already know enough to
clone the components.

Lesson 3: Cloning Components 19

CAUTION Public code modifications

Never modify the contents of the Public folder tree.

At a first glance, component cloning might seem like a lot of trouble, but it will save
you development time and effort in the long run.

Cloning Public Code
Platform Builder supports instant cloning for some Windows Embedded CE compo-
nents. To clone these components, right-click the catalog item in the Catalog Items
View of Solution Explorer and select Clone Catalog Item. Platform Builder will auto-
matically create a subproject for the component you selected in your OS design with
a copy of the code. Before using any other method, such as the Sysgen Capture tool,
you should check to see if the desired catalog component supports the Clone Catalog
Item option. If it does, then you are two mouse-clicks from completion, as illustrated
in Figure 1-5.

Figure 1-5 Cloning a catalog item

If you cannot automatically clone a component by using the IDE, you have to do it
manually. However, when you look at the sources file for a .dll or .exe file in the Public
directory tree, you see that this file is not the same as the sources file in your platform
directory or in a subproject directory. This is because the build process for the Public
directory tree differs from the BSP build process. All the build instructions are defined
in the makefile file, which is always located in the same directory as the associated
sources file. The Public directory tree must support the Sysgen phase, where the
required components are linked together relatively.

20 Chapter 1 Customizing the Operating System Design

Converting a component from the Public directory tree to a BSP component or a sub-
project requires a number of steps, which are outlined in detail in the Platform Builder
for Microsoft Windows Embedded CE product documentation under “Using the
Sysgen Capture Tool” at http://msdn2.microsoft.com/en-us/library/aa924385.aspx.

Basically, you need to perform the following steps:

1. Copy the code of the desired Public component into a new directory.

2. Edit the sources file in the new directory and add the line RELEASETYPE=
PLATFORM or change the value to PLATFORM if the line already exists so that
t he bu i ld eng in e p laces t he output f rom t h is bu i ld in to t he
%_TARGETPLATROOT% folder.

3. Add WINCEOEM=1 to the sources file and build the component in the new
directory. This might require further modifications to resolve all build errors.

4. Use the Sysgen Capture tool to create modular sources and dirs files.

5. Rename and use the files created by the Sysgen Capture tool along with a make-
file to rebuild the new cloned module.

Once you apply all required modifications to the cloned component, you can modify
and redistribute it as easily as any other code.

Lesson Summary
Windows Embedded CE includes a Public directory tree with the source code for
most of the CE components, but you should not modify the source code in the Public
directory tree directly. Instead, you should clone the items either automatically or
manually. Modifying the source code in the Public directory tree causes more trouble
now as well as in the future unless you already know the build system very well, in
which case you already know all the good reasons why you should use the cloning
method.

Lesson 4: Managing Catalog Items 21

Lesson 4: Managing Catalog Items
One of Windows Embedded CE’s most useful features is its catalog system. By using
the catalog, developers can quickly and conveniently customize the Windows
Embedded CE firmware to suit their needs. If you create a custom catalog item for
each of your components, you can facilitate the installation and configuration of your
components. This is a differentiating factor between ad-hoc and professional
Windows Embedded CE solutions. For ad-hoc solutions, it might be sufficient to pro-
vide basic installation notes and a list of required SYSGEN variables, but professional
software should include catalog items with proper values for SYSGEN variables and
configuration settings.

After this lesson, you will be able to:

■ Customize the content of the catalog.

■ Add a new component entry to a BSP catalog.

Estimated lesson time: 20 minutes.

Catalog Files Overview
The Windows Embedded CE catalog uses files in Extensible Markup Language
(XML) format with a .pbcxml file-name extension. The catalog includes a large
number of .pbcxml files, located inside the WINCEROOT directory. Platform Builder
automatically enumerates these files to generate the Catalog Items View in Solution
Explorer.

Platform Builder parses the following directories to enumerate catalog items:

■ Public catalog files %_WINCEROOT%\Public\<any subdirectory>\Catalog\

■ BSP catalog files %_WINCEROOT%\Platform\<any subdirectory>\Catalog\

■ Third-party catalog files %_WINCEROOT%\3rdParty\<any subdirectory>
\Catalog\

■ Common system-on-chip (SOC) files %_WINCEROOT%\Platform\Common
\Src\soc\<any subdirectory>\Catalog\

22 Chapter 1 Customizing the Operating System Design

NOTE 3rdParty folder

The 3rdParty folder usually contains standalone applications or source applications that can be
included and distributed as part of an OS design. By enumerating the .pbcxml files in the
3rdParty folder, Platform Builder provides a way to add entries to the Catalog Items View for
those components.

Creating and Modifying Catalog Entries
To add a new catalog item to the Windows Embedded CE catalog, you can create a
copy of an existing catalog file (.pbcxml file) and then edit the file content by using
the Catalog Editor provided with Platform Builder. You can also create a new catalog
file in Platform Builder if you open the File menu in Visual Studio, point to New, and
then select File. In the New File dialog box, under Platform Builder for CE 6.0 R2,
select Platform Builder Catalog File, and then click Open.

NOTE Editing catalog files

Always edit catalog files by using the Catalog Editor provided with Platform Builder. There are no
settings that require you to work with a text editor such as Notepad. Opening and editing cata-
log files manually outside of Platform Builder is unnecessarily time-consuming.

Catalog Entry Properties
Each catalog entry has a number of properties that you can modify in Platform
Builder, as illustrated in Figure 1-6. The most important properties include the follow-
ing:

■ Unique Id A unique identifier string.

■ Name The name of the catalog component as it appears in the Catalog Items
View.

■ Description An expanded description of the component, which appears when
the user hovers the mouse pointer over the catalog item for several seconds.

■ Modules A list of files that belong to this catalog component.

■ Sysgen variable An environment variable for the catalog item. If your catalog
component sets a SYSGEN variable, this is where to put it.

■ Additional Variables A collection of additional environment variables for the
catalog item. This is possibly the most important part of the catalog component
in a BSP, because this field enables you to set environment variables used in

Lesson 4: Managing Catalog Items 23

sources, .bib, and .reg files to control the build process. You can also use this field
to generate dependencies on other components.

■ Platform directory The location of the catalog item files. For a new BSP, set this
property to the name of the BSP’s directory.

Figure 1-6 Catalog item properties

NOTE Unique names

Each catalog component must have a unique ID, typically composed of the vendor and the
component names. When you clone a BSP by using the Clone Catalog Item feature, Platform
Builder creates a unique name for the cloned component automatically; however, when editing
catalog files manually, be sure to use unique identifiers.

Adding a New Catalog Item to an OS Design

To use a new catalog file or catalog item, ensure that the corresponding .pbcxml file
exists in a subfolder called Catalog under a subdirectory of the 3rdParty or Platform
directories, and then click the Refresh Catalog Tree button in the Catalog Items View
in Visual Studio. Platform Builder dynamically regenerates the catalog by traversing
the 3rdParty and Platform directories and processing any existing catalog files. With
the new component listed in the Catalog Items View, you can include it in the OS
design by selecting its check box, as explained earlier in Lesson 1.

24 Chapter 1 Customizing the Operating System Design

Using a Catalog Item for BSP Development
Now that you have added your new catalog component and learned how to set item-
specific environment variables, you can use this technique to include the component
in a BSP, set C/C++ build directives, and modify system registry settings in the run-
time image. When other developers using this BSP select your catalog item in an OS
design project, they will implicitly use the settings you specified. To include a catalog
component in a BSP, you need to edit the BSP’s Platform.bib file and add a conditional
statement based on your settings. You can choose to include a component if a variable
is or isn’t defined by using if-else statements. Note that it might be necessary to run
the Rebuild Current BSP and Subprojects command, which you can find in Visual
Studio on the Build menu, under Advanced Build Commands, for changes to the .bib
and .reg files to take effect. Chapter 2 covers the Rebuild Current BSP and Subprojects
command in more detail.

To set a C/C++ directive based on an environment variable that you specified in the
catalog item’s properties, you can use a conditional statement in the sources file based
on the variable and add a CDEFINES entry. You should generally try to avoid setting
C/C++ build directives based on catalog item properties, as this approach will make it
difficult to distribute a binary version of your BSP in the future.

You can also change entries in the system registry by using conditional statements.
You only need to edit the .reg files to include or exclude certain registry files related
to the new component.

Exporting a Catalog Item from the Catalog
Some catalog items do not support direct cloning. To clone these components, you
must create either a new catalog file, if you are creating a new entry under the 3rdParty
folder, or a new entry in a BSP’s existing catalog file. In any case, you should verify that
the original values for all SYSGEN and additional environment variables are pre-
served. Do not forget to change the ID, because each item in the catalog must have a
unique ID, as mentioned earlier in this lesson.

Catalog Component Dependencies
The catalog in Platform Builder for Windows Embedded CE 6.0 R2 supports compo-
nent dependencies. To specify that a component is dependent on another compo-
nent, you must set the SYSGEN or Additional Variables field for the component of the
catalog item, and then include this value in the form of an additional environment
variable in the dependent component. For example, if you have catalog components

Lesson 4: Managing Catalog Items 25

in your BSP for both a display driver and a backlight driver for the display, you can set
the Additional Variables field for the display driver to BSP_DISPLAY and the Addi-
tional Variables field for the backlight driver to BSP_BACKLIGHT. If you now want
the display driver to be dependent on the backlight driver, you can edit the catalog
entry for BSP_DISPLAY in the Catalog Editor and add BSP_BACKLIGHT to the addi-
tional environment variables. Then, whenever you include the display driver in an OS
design, Platform Builder automatically includes the backlight driver as well. The Cat-
alog Items View will show the check box of the backlight driver with a green square
to indicate that this component is included as a dependency of the display driver.

Lesson Summary
Platform Builder for Windows Embedded CE 6.0 R2 comes with a file-based catalog
system that you can use to contain your own catalog items by including them in sep-
arate catalog files in the Platform or 3rdParty directory within the %_WINCEROOT%
directory tree. The file format of catalog files is XML and the file-name extension is
.pbcxml. Platform Builder automatically enumerates the .pbcxml files when you start
Visual Studio or refresh the Catalog Items View in Solution Explorer. To add a new
catalog item to the Windows Embedded CE catalog, you can start with a new catalog
file or create a copy of an existing catalog item and then edit the file content by using
the Catalog Editor. There is no need to edit .pbcxml files by using a text editor, such
as Notepad, because all settings are available directly within Platform Builder. Among
other things, you can specify SYSGEN and additional environment variables for con-
ditional C/C++ build directives, registry modifications, and dependency definitions.

26 Chapter 1 Customizing the Operating System Design

Lesson 5: Generating a Software Development Kit
Developers who want to create applications for a target device require a Software
Development Kit (SDK). An SDK will automatically correspond to your OS design so
that the developers can only use those features that are actually available. The SDK
includes features that are present in the OS design so that application developers do
not accidentally create code that fails to run at run time due to an unsupported API.

After this lesson, you will be able to:

■ Identify the purpose of an SDK.

■ Generate an SDK.

■ Localize SDK files on your hard drive.

■ Use an SDK.

Estimated lesson time: 20 minutes.

Software Development Kit Overview
In order to compile and create valid applications for your OS design, developers need
to include the necessary header files and link to the correct libraries in their develop-
ment projects. You must ensure that the SDK for your OS design contains all required
header files and libraries, including headers and libraries for any custom components
you want to provide to application developers. Platform Builder for Windows Embed-
ded CE 6.0 R2 enables you to create SDKs for your OS designs by exporting all the
required header files and libraries.

SDK Generation
It is generally the task of the OS design creator to generate and distribute customized
SDKs. Platform Builder provides an SDK export feature for this purpose. The SDK
export feature creates the customized SDK for your OS design, along with a .msi file
that includes the SDK Setup Wizard.

Configuring and Generating an SDK

To create and configure an SDK by using the SDK export feature of Platform Builder,
follow these steps:

Lesson 5: Generating a Software Development Kit 27

1. Configure your OS design and build it at least once in the Release configuration.

2. Display Solution Explorer, right-click SDKs, and select Add New to display the
SDK Property Pages dialog box.

3. In the SDK Property Pages dialog box, configure the Install properties of the
SDK and define the MSI Folder Path, MSI File Name, and Locale, as illustrated
in Figure 1-7. You can also specify a number of custom settings.

4. To include additional files, select the Additional Folders node in the SDK Prop-
erty Pages dialog box.

5. Click OK.

Figure 1-7 SDK Property Pages dialog box

Adding New Files to an SDK
You can add files to an SDK manually by either using the Additional Folders option in
the SDK property pages or by copying them into the SDK directory for your OS
design, typically in %_WINCEROOT%\OSDesigns\<Solution Name>\<OS Design
Name>\WinCE600\<Platform Name>\SDK. It is also possible to automate that pro-
cess by using .bat and sources files, so that the build engine copies the latest version
of the files into the SDK each time you perform a build.

28 Chapter 1 Customizing the Operating System Design

Make sure you copy the files into the following SDK subdirectories:

■ Inc Contains the header files included in the SDK.

■ Lib\<Processor Type>\<Build Type> Contains the libraries included in the SDK.

Installing an SDK
After completing the SDK build process, you can find the .msi file in the SDK subdi-
rectory of your OS design folder. This is typically %_WINCEROOT%\OSDesigns
\<Solution Name>\<OS Design Name>\SDKs\SDK1\MSI\<SDK Name>.msi. You can
freely redistribute this MSI according to your licensing agreements for Platform
Builder and any third-party components included.

You can install this MSI package on any computer with Visual Studio 2005 and use it
to develop Windows Embedded CE applications for your target device. On a com-
puter with the SDK installed, you can find the files under %PROGRAMFILES%
\Windows Embedded CE Tools\WCE600.

Lesson Summary
Windows Embedded CE 6.0 R2 is a componentized operating system, which implies
that application developers require a customized SDK that corresponds to your OS
design in order to develop applications that will work on your target device. The cus-
tom SDK should not only include the required Windows Embedded CE components,
but also the headers and libraries for any custom components that you included in
the OS design, to avoid problems due to missing files or libraries at build and run
time. Platform Builder provides an SDK export feature to generate SDKs and to create
an MSI package for convenient SDK deployment on application development com-
puters by means of an SDK Setup Wizard.

Lab 1: Creating, Configuring, and Building an OS Design 29

Lab 1: Creating, Configuring, and Building an OS Design
In this lab, you create an OS design, and then customize that design by adding com-
ponents from the catalog. It is important to complete all the procedures in this lab,
because it provides the foundation for subsequent exercises in other chapters of this
Microsoft Windows Embedded CE 6.0 R2 Exam Preparation Kit.

NOTE Detailed step-by-step instructions

To help you successfully master the procedures presented in this lab, see the document
“Detailed Step-by-Step Instructions for Lab 1” in the companion material for this book.

� Create an OS Design

1. In Visual Studio 2005 with Platform Builder for Windows Embedded CE 6.0 R2,
select the File menu, New submenu, and Project menu option, and then create
a new OS design project.

2. Use the default OS design name (OSDesign1).

3. Visual Studio will launch the Windows Embedded CE 6.0 OS Design Wizard.

4. Select the check box for Device Emulator: ARMV4I in the BSP list and click Next.

5. From the list of available design templates, select PDA Device. From the list of
available design variants select Mobile Handheld.

6. Deselect .NET Compact Framework 2.0 and ActiveSync on the next wizard page,
as illustrated in Figure 1-8. The Internet Browser and Quarter VGA Resources-
Portrait Mode check boxes should remain checked.

7. On the Networking Communications wizard page, deselect TCP/IPv6 Support
and Personal Area Network (PAN) to exclude Bluetooth and Infrared Data Asso-
ciation (IrDA) support. Leave Local Area Network (LAN) selected.

8. Click Finish to complete the Windows Embedded CE 6.0 OS Design Wizard. On
completion, Visual Studio opens your OS design project. The Solution Explorer
tab should be active and show your new OS design project under the Solution
container.

30 Chapter 1 Customizing the Operating System Design

Figure 1-8 Creating an OS design for a PDA device

NOTE Subsequent OS design changes

The OS Design Wizard creates the initial configuration for your OS design. You can make further
changes to the OS design after completing the wizard.

Lab 1: Creating, Configuring, and Building an OS Design 31

� Inspect the OS Catalog

1. In Visual Studio, locate Solution Explorer and click the Catalog Items View tab.

2. Expand the individual container nodes to analyze the selected check boxes and
icons in the catalog. Check boxes with a green check mark indicate items specif-
ically added as a part of the OS design. Check boxes with a green square indicate
items that are part of the OS design due to dependencies. Selection boxes that
are not marked indicate items that are not included in the OS design but are
available to be added.

3. Locate a catalog item with a green square in its check box.

4. Right-click this catalog item and choose Reasons For Inclusion Of Item. The
Remove Dependent Catalog Item dialog box displays the catalog items that
caused Platform Builder to include the selected catalog item in the OS design, as
illustrated in Figure 1-9.

5. Expand the Core OS | CEBASE | Applications – End User | ActiveSync node in
the catalog.

6. Right-click either of the ActiveSync system cpl items and select Display In Solu-
tion View. The view changes to the Solution Explorer tab to display the sub-
project containing the ActiveSync component. This is a great way to navigate
through the source code that comes with Windows Embedded CE 6.0.

Figure 1-9 Reason for including a catalog item as a dependency

32 Chapter 1 Customizing the Operating System Design

� Add Support for the Internet Explorer 6.0 Sample Browser Catalog Item

1. Select the Catalog Items View tab to display the OS design catalog. Verify that
the filtering option is set to All Catalog Items In Catalog.

2. In the Search text box to the right of the Catalog Items View Filter button, type
Internet Explorer 6.0 Sample and press Enter or click the green arrow.

3. Verify that the search locates the Internet Explorer 6.0 Sample Browser catalog
item. Select the corresponding check box to include this catalog item in the OS
design, as illustrated in Figure 1-10.

Figure 1-10 Including the Internet Explorer 6.0 Sample Browser catalog item in an OS design

� Add Support for Managed Code Development to Your OS Design

1. In the Search text box, type ipconfig and press Enter.

2. Verify that the search locates the Network Utilities (IpConfig, Ping, Route) cata-
log item.

3. Add the Network Utilities (IpConfig, Ping, Route) catalog item to your OS
design by selecting the corresponding check box.

4. In the Search text box, type wceload and press Enter.

5. Verify that the search locates the CAB File Installer/Uninstaller catalog item. The
search can find this catalog item because the value of its SYSGEN variable is
wceload.

Lab 1: Creating, Configuring, and Building an OS Design 33

6. Add the Cab File Installer/Uninstaller catalog item to your OS design.

7. Use the search feature in a similar way to locate the OS Dependencies for .NET
Compact Framework 2.0 container. Verify that the OS Dependencies for .NET
Compact Framework 2.0 catalog item is included in your OS design, as illus-
trated in Figure 1-11.

Figure 1-11 Adding the OS Dependencies for .NET Compact Framework 2.0 catalog item
to an OS design

NOTE Headless .NET Compact Framework

There are two separate components in this category. Be sure you select the one that does not
have the –Headless modifier in its description, because the headless version is intended for
devices with no display.

34 Chapter 1 Review

Chapter Review
In order to deploy Microsoft Windows Embedded CE 6.0 R2 on a target device, you
must create an OS design that includes the necessary operating system (OS) compo-
nents, features, drivers, and configuration settings. You can then use Platform Builder
to build the corresponding run-time image for deployment. The most important tasks
you must accomplish to create a customized OS design that suits your requirements
include:

■ Creating an OS design project in Visual Studio by using the OS Design Wizard.

■ Adding and removing components from the OS manually and through depen-
dencies.

■ Setting environment and SYSGEN variables through the Catalog Editor.

■ Configuring regional settings for localization of the OS design.

■ Cloning components from the catalog either automatically by clicking Clone
Catalog Item or manually by using the Sysgen Capture tool.

■ Exporting a custom SDK for your OS design to facilitate application development
for your target device.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ OS design

■ Component

■ SYSGEN variable

■ Environment Variable

■ Software Development Kit

Suggested Practice
To help you successfully master the exam objectives presented in this chapter,
complete the following tasks:

Chapter 1 Review 35

Create a Custom OS Design
By using the OS Design Wizard, create an OS design based on the Device Emulator:
ARMV4I BSP and the Custom Device design template. Perform the following tasks
after OS design creation:

■ Add the .NET Compact Framework 2.0 Add this catalog item by using the
search feature in the Catalog Items View.

■ Localize your run-time image Display the OS Design property pages and local-
ize the OS design for the French language.

Generate and Test an SDK
Based on the OS design generated during Lab 1, perform the following tasks:

■ Build and generate the binary image Build and generate the binary image for
the OS design generated in the Release build configuration.

■ Create and install the SDK Verify that the build process completes successfully,
and then create a new SDK, build it, and install it on an application development
computer.

■ Use the SDK Use another instance of Visual Studio and create a Win32 Smart
Device application. Use your custom SDK as the reference SDK for the project
and build the application.

37

Chapter 2

Building and Deploying a
Run-Time Image

The Microsoft® Windows® Embedded CE 6.0 R2 build process is very complex. This
process includes several phases and relies on a variety of tools to initialize the
Windows Embedded CE build environment, compile the source code, copy modules
and files to a common release directory, and create the run-time image. Batch files and
build tools, such as the Sysgen tool (Sysgen.bat) and the Make Binary Image tool
(Makeimg.exe), automate this process. You can run these tools directly at the
command prompt or start the build process in Microsoft Platform Builder for
Windows Embedded CE 6.0 R2. The Platform Builder integrated development
environment (IDE) relies on the same processes and tools. In either case, a thorough
understanding of the build process and the steps required to deploy the resulting run-
time image is essential if you want to create run-time images efficiently, troubleshoot
build errors, or deploy Board Support Packages (BSPs) and subprojects as part of a
run-time image on a target device.

Exam objectives in this chapter:

■ Building run-time images

■ Analyzing build results and build files

■ Deploying a run-time image on a target device

38 Chapter 2 Building and Deploying a Run-Time Image

Before You Begin
■ To complete the lessons in this chapter, you must have:

■ An understanding of operating system (OS) design aspects, including catalog
items and the configuration of environment variables and SYSGEN variables, as
explained in Chapter 1, “Customizing the Operating System Design.”

■ At least some basic knowledge about Windows Embedded CE software
development, including source code compilation and linking.

■ A development computer with Microsoft Visual Studio® 2005 Service Pack 1 and
Platform Builder for Windows Embedded CE 6.0 R2 installed.

Lesson 1: Building a Run-Time Image 39

Lesson 1: Building a Run-Time Image
The Windows Embedded CE build process is the final step in the run-time image
development cycle. Based on the settings defined in the OS design, Platform Builder
compiles all components, including subprojects and the BSP, and then creates a run-
time image that you can download to the target device. The build process entails
several build phases, automated by means of batch files. You must understand these
phases and the build tools if you want to configure build options correctly, create run-
time images efficiently, and solve build-related issues.

After this lesson, you will be able to:

■ Understand the build process.

■ Analyze and fix build issues.

■ Deploy a run-time image to target hardware.

Estimated lesson time: 40 minutes.

Build Process Overview
The Windows Embedded CE build process includes four main phases, as illustrated
in Figure 2–1. They follow each other sequentially, but you can also carry them out
independently if you know the purpose and tools used for each phase. By selectively
running the build tools, you can perform individual build steps in a targeted way,
which helps to save build time and ultimately increases your efficiency.

40 Chapter 2 Building and Deploying a Run-Time Image

Figure 2-1 Build phases and build tools

The build process includes the following key phases:

■ Compile phase Compiler and linker use source code and resource files to
generate executable (.exe) files, static (.lib) libraries, dynamic-link library (.dll)
files, and binary resource (.res) files according to the selected locales. For
example, the build system compiles the source code in the Private and Public
folders into .lib files during this phase. This process can take several hours to
complete, but fortunately it is seldom required to rebuild these components
because binaries are already provided by Microsoft. In any case, you should not
modify the source code in the Private and Public folders.

■ Sysgen phase The build system sets or clears SYSGEN variables based on the
catalog items and dependency trees included in the OS design, filters the header
files and creates import libraries for the Software Development Kits (SDKs)
defined in the OS design, creates a set of run-time image configuration files for
the OS design, and builds the BSP based on the source files in the Platform
directory.

■ Build phase The build system processes the source files of your Board Support
Package and applications using the files generated during the Sysgen phase. At
this time, hardware-linked drivers and the OEM adaptation layer (OAL) are

Compile Phase

Sysgen Tool
(Sysgen.bat)

Sysgenplatform Tool
(Sysgenplatform.bat)

Cesysgen Tool
(Cesysgen.bat)

Build Demo Tool
Blddemo.bat

Nmake Tool
(Nmake.exe)

Makefile

Compiler
(Build.exe)

Build Release
Tool

(Buildrel.bat)

Make Binary
Image Tool

(MakeImg.exe)

Master Build Tool
Cebuild.bat

Sysgen Phase Release Copy
Phase

Make Run-Time
Image Phase

Lesson 1: Building a Run-Time Image 41

built. Although the processes during the build phase are carried out
automatically during the Sysgen phase, it is important to understand that if you
modify only the BSP and subprojects, then you can rebuild the BSP and
subprojects without running the Sysgen tool again.

■ Release Copy phase The build system copies all files required to create the run-
time image to the OS design’s release directory. This includes the .lib, .dll, and
.exe files created during the Compile and Sysgen phases, as well as binary image
builder (.bib) and registry (.reg) files. The build system might skip this phase if
headers and libraries are up-to-date.

■ Make Run-time Image phase The build system copies project-specific files
(Project.bib, Project.dat, Project.db, and Project.reg) to the release directory and
assembles all files in the release directory into a run-time image. Directives based
on environment variables specified in .reg and .bib files control which catalog
items the build system includes in the final run-time image. The run-time image
is typically a file named Nk.bin, which you can download and run on the target
device.

Building Run-Time Images in Visual Studio
During the installation of Windows Embedded CE 6.0 R2 on your development
workstation, Platform Builder integrates with Visual Studio 2005 and extends the
Build menu so that you can control the build process directly in the Visual Studio IDE.
Figure 2–2 shows the Platform Builder commands that are available on the Build
menu when you select the OS design node in Solution Explorer.

You can use the Platform Builder commands on the Build menu to perform selective
build steps or a combined series of steps that span multiple build phases. For
example, you can use the Copy Files To Release Directory command to ensure that
the build system copies updated .bib and .reg files to the release directory even if
header files and libraries have not changed. Otherwise, the build system skips the
Release Copy phase and .bib file or .reg file changes are not applied to the run-time
image.

42 Chapter 2 Building and Deploying a Run-Time Image

Figure 2-2 Windows Embedded CE build commands in Visual Studio 2005

Table 2–1 summarizes the purpose of the Windows Embedded CE build commands.

Table 2-1 Windows Embedded CE build and rebuild commands

Menu Option Description

Build Solution Equivalent to the Sysgen command on the
Advanced Build Commands submenu.

Rebuild Solution Equivalent to the Clean Sysgen command on the
Advanced Build Commands submenu.

Clean Solution Cleans the release directory by deleting all
intermediate files.

Build <OS Design Name> Helpful in solutions that include multiple OS
designs. In solutions with a single OS design,
these options correspond to the Build Solution,
Rebuild Solution, and Clean Solution
commands.

Rebuild <OS Design Name>

Clean <OS Design Name>

Lesson 1: Building a Run-Time Image 43

Advanced Build
Commands

Sysgen Runs the Sysgen tool and links the .lib files in
the Public and Private folders to create the files
for the run-time image. The files remain in the
WinCE folder of the OS design. Depending on
global build settings, the build process can
automatically advance to the Release Copy and
then Make Run-time Image phases.

Clean Sysgen Cleans out intermediate files created during
previous builds before running the Sysgen tool.
Use this option if you added or removed files or
catalog items after a previous Sysgen session to
reduce the risk of build errors.

Build And
Sysgen

Compiles the entire contents of the Public and
Private folders, and then links the files by using the
settings in your OS design. This process takes
several hours and is only necessary if you modified
the contents of the Public folder. Unless you modi-
fy the Windows Embedded CE code base (not
recommended), you should not use this option.

Rebuild And
Sysgen

Cleans out intermediate files created during
previous builds in the Public and Private folders,
and then runs the Build and Sysgen steps. You
should not use this option.

Build Current
BSP And
Subprojects

Builds the files in the directory for the current BSP
and any subprojects in the OS design, and then
runs the Sysgen tool. Note that this option will
build other BSPs than the ones used in the current
OS design, so make sure your BSPs are compatible
with each other or remove unused BSPs.

Rebuild
Current BSP
And
Subprojects

Cleans out intermediate files created during
previous builds, and then runs the Build
Current BSP And Subprojects steps.

Table 2-1 Windows Embedded CE build and rebuild commands (Continued)

Menu Option Description

44 Chapter 2 Building and Deploying a Run-Time Image

Build All Subprojects Compiles and links all subprojects, skipping any
files that are up-to-date.

Rebuild All Subprojects Cleans, compiles, and links all subprojects.

Build All SDKs Builds all SDKs in the project and creates
corresponding Microsoft Installer (MSI)
packages. Because there is generally no reason to
create debug versions of MSI packages, use this
option only for a Release build configuration.

Copy Files To Release Directory Copies the files generated for the BSP and other
components during the Compile and Sysgen
phases to the release directory in order to
include these file in the run-time image.

Make Run-Time Image Takes all the files in the release directory to
create the run-time image. Following this step,
you can download the run-time image to a target
device.

Open Release Directory In
Build Window

Opens a Command Prompt window, changes
into the release directory, and sets all necessary
environment variables to run batch files and
build tools manually. Use this to perform build
steps at the command prompt. The standard
Command Prompt window does not initialize
the development environment to run the build
tools successfully.

Global Build
Settings

Copy Files
To Release
Directory
After Build

Enables or disables automatic advancement to
the Release Copy phase for all commands.

Make Run-
Time Image
After Build

Enables or disables automatic advancing to the
Make Run-time Image phase after any build
operation.

Table 2-1 Windows Embedded CE build and rebuild commands (Continued)

Menu Option Description

Lesson 1: Building a Run-Time Image 45

The Advanced Build Commands submenu provides access to several Platform
Builder–specific build commands that you might find useful on a regular basis. For
example, you need to run the Sysgen or Clean Sysgen command when you add or
remove catalog components to or from the OS design to create the binary versions for
the run-time image. Exceptions to this rule are components that do not modify
SYSGEN variables, such as components in the ThirdParty folder. It is not necessary to
run Sysgen or Clean Sysgen when you select or deselect these items. Following the
Sysgen phase, Platform Builder continues the build process similar to running the
Build Current BSP And Subprojects command.

You can select the Build Current BSP And Subprojects or the Rebuild Current BSP
And Subprojects commands in Visual Studio if you want to compile and link the
source code in the Platform directory and any subprojects in the OS design and put
the code into the target directory under Platform\<BSP Name>\Target and
Platform\<BSP Name>\Lib. This is necessary, for instance, if you modify the source
code in the Platform directory. Depending on the Copy Files To Release Directory
After Build and Make Run-Time Image After Building options, Platform Builder copies
the files to the release directory and creates the run-time image. You can also perform
these steps individually either through the menu or by running the Buildrel.exe and
Makeimg.exe tools at the command prompt.

CAUTION Clean Sysgen affects multiple build configurations

If you run the Clean Sysgen command in one build configuration, you also have to run Sysgen
for the other build configurations later. Keep in mind that the Clean Sysgen command deletes all
files generated for other build configurations, as well as for the current build configuration.

Targeted Build
Settings

Make Run-
Time Image
After Build

Enables or disables the Make Run-time Image
phase.

Batch Build Enables you to perform multiple builds
sequentially.

Configuration Manager Enables you to add or remove build
configurations.

Table 2-1 Windows Embedded CE build and rebuild commands (Continued)

Menu Option Description

46 Chapter 2 Building and Deploying a Run-Time Image

Building Run-Time Images from the Command Line
The Platform Builder for CE6 R2 plug-in for Visual Studio 2005 provides convenient
access to batch files and build tools, but you can also run these batch files and build
tools directly at the command prompt. Each build command in Visual Studio with
Platform Builder corresponds to a specific build command, as listed in Table 2–2.
Remember, however, to use the Open Build Window command in Visual Studio to
open a Command Prompt window for this purpose. The standard command prompt
does not initialize the development environment. The build process will fail without
the presence of the required environment variables.

* Not recommended

Windows Embedded CE Run-Time Image Content
As illustrated in Figure 2–3, the run-time image includes all items and components
that you want to deploy and run on a target device as part of the OS design, such as
kernel components, applications, and configuration files. The most important
configuration files for developers are binary image builder (.bib) files, registry (.reg),
database (.db), and file system (.dat) files. These files determine the memory layout
and specify how Platform Builder initializes the file system and the system registry. It
is important to know how to work with these files. For example, you can modify the
.reg and .bib files for a BSP directly in the OS design or create a subproject to add
custom settings to the run-time image in a more componentized way. As mentioned in

Table 2-2 Build commands and command line equivalents

Build Command Command Line Equivalent

Build blddemo -q

Rebuild blddemo clean -q

Sysgen blddemo -q

Clean Sysgen blddemo clean -q

Build And Sysgen* Blddemo

Rebuild And Clean Sysgen* blddemo clean cleanplat -c

Build Current BSP And Subprojects blddemo -qbsp

Rebuild Current BSP And Subprojects blddemo -c -qbsp

Lesson 1: Building a Run-Time Image 47

Chapter 1, it is generally faster and more convenient to modify the .reg and .bib files
of an OS design directly, yet subprojects facilitate the reuse of customizations across
multiple OS designs.

Figure 2-3 Contents of a run-time image

Binary Image Builder Files
The Windows Embedded CE build process relies on .bib files to generate the content
of the run-time image and to define the final memory layout of the device. At the end
of the build process, during the Make Run-time Image phase, the Make Binary Image
tool (Makeimg.exe) calls the File Merge tool (Fmerge.exe) to combine all applicable
.bib files, such as Config.bib and Platform.bib from the Platform\<BSP Name>\Files
folder, Project.bib, Common.bib, and any subproject .bib files, into a file named
Ce.bib in the release directory. The Make Binary Image tool then calls the ROM Image
Builder tool (Romimage.exe) to process this file and determine which binaries and
files to include in the run-time image.

A .bib file can include the following sections:

■ MEMORY Defines the parameters for the memory layout. You can typically find
t h i s s e c t i on i n t he C o n f i g .b ib f i l e fo r yo u r BS P, su c h as
C:\Wince600\Platform\DeviceEmulator\Files\Config.bib.

■ CONFIG Defines configuration options for Romimage.exe to customize the
binary run-time image. You can typically find this section in the Config.bib file
for your BSP. This section is optional.

NK.bin

Application Layer

Object Store

Database

Kernel Layer

Kernel
Drivers

OEM Adaptation Layer (OAL)

Windows CE
Applications

Application Services Shell

Custom
Applications

Internet Client
Services

System
Registry

RAM File
System

48 Chapter 2 Building and Deploying a Run-Time Image

■ MODULES Specifies a list of files that Romimage.exe marks to be loaded into
RAM or executed in place (XIP). Only uncompressed object modules can
execute directly from read-only memory. You can list native executable files in
this section, but not managed binaries, because the Common Language Runtime
(CLR) must convert the Microsoft Intermediate Language (MSIL) content into
native machine code at run time.

■ FILES References executables and other files that the operation system should load
into RAM for execution. You should specify managed code modules in this section.

.BIB File MEMORY Section The MEMORY section in the Config.bib file defines
reserved memory regions, assigning each region a name, address, size, and type. A good
example is the MEMORY section that you can find in the Config.bib file in the Device
Emulator BSP. This Device Emulator BSP is available with Platform Builder for CE 6.0
R2 out-of-the-box. You can find Config.bib in the PLATFORM\<BSP Name>\FILES
directory. Figure 2–4 shows this MEMORY section in Visual Studio 2005.

Figure 2-4 MEMORY section from a .bib file

Lesson 1: Building a Run-Time Image 49

The fields in the MEMORY section define the following parameters:

■ Name This is the name of the MEMORY section. The name must be unique.

■ Address This hexadecimal number represents the starting address of the
memory section.

■ Size This hexadecimal number defines the total length of the memory section
in bytes.

■ Type This field can have one of the following values:

■ RESERVED Indicates that this area is reserved. Romimage.exe skips these
sections during image creation. For example, the Ce.bib file shown in Figure
2–4 includes several RESERVED sections, such as an ARGS section to provide
a shared memory area for the boot loader (EBOOT) to pass data to the system
after startup (ARGS) and a DISPLAY section for a display buffer. The Ce.bib
file of other OS designs might include different RESERVED sections for mem-
ory areas that the kernel is not supposed to use as system memory.

■ RAMIMAGE Defines the memory area that the system can use to load the
kernel image and any modules you specified in the MODULES and FILES sec-
tions of .bib files. A run-time image can only have one RAMIMAGE section
and the address range must be contiguous.

■ RAM Defines a memory area for the RAM file system and for running appli-
cations. This memory section must be contiguous. If you need a noncontigu-
ous memory section, such as for extension dynamic RAM (DRAM) present on
the device, you can allocate noncontiguous memory by implementing the
OEMGetExtensionDRAM function in the OAL of the BSP. Windows Embed-
ded CE supports up to two sections of physical noncontiguous memory.

.BIB File CONFIG Section The CONFIG section defines additional parameters for the
run-time image, including the following options:

■ AUTOSIZE Automatically combines RAMIMAGE and RAM sections and
allocates any unused memory in the RAMIMAGE section to RAM, or if necessary
takes memory from the RAM section and provides it to the RAMIMAGE.

■ BOOTJUMP If specified, moves the boot jump page to a specific area within the
RAMIMAGE section, rather than by using the default area.

■ COMPRESSION Automatically compresses writable memory sections in the
image. The default value for this option is ON.

50 Chapter 2 Building and Deploying a Run-Time Image

■ FIXUPVAR Initializes a kernel global variable during the Make Binary Image
phase.

■ FSRAMPERCENT Sets the percentage of RAM used for the RAM file system.
■ KERNELFIXUPS Instructs Romimage.exe to relocate memory writable by the

kernel. This option is generally enabled (ON).
■ OUTPUT Changes the directory that Romimage.exe uses as the output

directory for the Nk.bin file.
■ PROFILE Specifies whether the image includes the profiler.
■ RAM_AUTOSIZE Expands the size of RAM to the end of the last XIP section.

■ RESETVECTOR Relocates the jump page to a specified location. This is
required for MIPS processors to boot from 9FC00000.

■ ROM_AUTOSIZE Resizes XIP regions, taking into account the
ROMSIZE_AUTOGAP setting.

■ ROMFLAGS Configures the following options for the kernel:
■ Demand paging Fully copying a file into RAM before executing it or paging

in parts of it.
■ Full kernel mode Run every OS thread in kernel mode, which leaves the sys-

tem vulnerable to attack but improves performance.
■ Trust only ROM modules Marks only files in ROM as trusted.
■ Flush the X86 TLB on X86 systems Improves performance but adds a security

risk.
■ Honor the /base linker setting Defines whether or not to use the /base linker

setting in DLLs.
■ ROMOFFSET Enables you to run the run-time image in a memory location that

is different from the storage location. For example, you can store the run-time
image in FLASH memory, and then copy and run it from RAM.

■ ROMSIZE Specifies the size of the ROM in bytes.
■ ROMSTART Specifies the ROM’s starting address.

■ ROMWIDTH Specifies the number of data bits and how Romimage.exe splits
the run-time image. Romimage.exe can put the entire run-time image into one
file, split the run-time image into two files of even and odd 16-bit words, or create
four files of even and odd 8-bit bytes.

■ SRE Determines whether Romimage.exe generates a .sre file. Motorola S-record
(SRE) is a file format recognized by most ROM burners.

Lesson 1: Building a Run-Time Image 51

■ X86BOOT Specifies whether or not to add a JUMP instruction at the x86 reset
vector address.

■ XIPSCHAIN Enables the creation of Chain.bin and Chain.lst files to set up an
XIP chain, so that you can split an image into multiple files.

.BIB File MODULES and FILES Sections BS P an d OS d es ign deve lopers m ust
frequently edit the MODULES and FILES sections of a .bib file to add new
components to a run-time image. The format for the MODULES and FILES section is
practically identical, although the MODULES section supports more configuration
options. The key difference is that the MODULES section lists files not compressed in
memory to support XIP, while the FILES section lists files that are compressed. The
operating system must decompress the data when accessing the files.

The following listing shows two small MODULES and FILES sections from a
Platform.bib file. For a complete example, check out the Platform.bib file of the Device
Emulator BSP.

MODULES

; Name Path Memory Type

; -------------- ---------------------------- -----------

; @CESYSGEN IF CE_MODULES_DISPLAY

IF BSP_NODISPLAY !

 DeviceEmulator_lcd.dll $(_FLATRELEASEDIR)\DeviceEmulator_lcd.dll NK SHK

IF BSP_NOBACKLIGHT !

 backlight.dll $(_FLATRELEASEDIR)\backlight.dll NK SHK

ENDIF BSP_NOBACKLIGHT !

ENDIF BSP_NODISPLAY !

; @CESYSGEN ENDIF CE_MODULES_DISPLAY

FILES

; Name Path Memory Type

; -------------- -------------------------------- -----------

; @CESYSGEN IF CE_MODULES_PPP

dmacnect.lnk $(_FLATRELEASEDIR)\dmacnect.lnk NK SH

; @CESYSGEN ENDIF CE_MODULES_PPP

You can define the following options for file references in MODULES and FILES
sections:

■ Name The name of the module or file as it appears in the memory table. This
name is usually the same as the file name in the run-time image.

■ Path The complete path to the file that Romimage.exe incorporates into the
run-time image.

52 Chapter 2 Building and Deploying a Run-Time Image

■ Memory References the name of a memory area in the MEMORY section of the
Config.bib file into which Romimage.exe loads the module or file. It is usually
set to NK to integrate the file in the NK area defined in the MEMORY section.

■ Section Override Enables you to specify modules in a FILES section and files
in a MODULES section. Essentially, Romimage.exe ignores the section in which
the entry resides, and treats the entry as a member of the specified section. This
parameter is optional.

■ Type Specifies the file type and can be a combination of flags, as shown in Table
2–3.

Table 2-3 File type definitions for MODULES and FILES sections

MODULES and FILES Sections MODULES Section Only

■ S The file is a system file.

■ H The file is hidden.

■ U The file is uncompressed.
(The default setting for files
is compressed.)

■ N The module is not
trusted.

■ D The module cannot be
debugged.

■ K Instructs Romimage.exe to
assign a fixed virtual address to the
DLL’s public exports and runs the
module in kernel mode rather than
user mode. Drivers must run in ker-
nel mode to have direct access to
the underlying hardware.

■ R Compress resource files.

■ C Compress all data in the file. If
the file is already in RAM, it will be
decompressed again into a new sec-
tion of RAM, which results in
higher RAM consumption.

■ P Do not check the CPU type on a
per-module basis.

■ X Sign the module and include the
signature in the ROM.

■ M Signals that the kernel must not
page the module on demand. (See
Chapter 3 for more information on
the effects of demand paging.)

■ L Instructs Romimage.exe not to
split the ROM DLL.

Lesson 1: Building a Run-Time Image 53

Conditional .bib File Processing It is important to note that .bib files support
conditional statements based on environment variables and SYSGEN variables. You
can set environment variables through catalog items, and then check these variables
in IF statements in a .bib file to include or exclude certain modules or other files. For
SYSGEN variables, use @CESYSGEN IF statements instead.

The MODULES and FILES listing in the previous section illustrates the use of
@CESYSGEN IF and IF statements for processing conditions based on SYSGEN and
environment variables. For example, the @CESYSGEN IF CE_MODULES_DISPLAY
statement in the MODULES sections specifies that the BSP should automatically
include the display driver if the OS design includes a display component. You can
verify that Platform Builder adds the display component to the BSP automatically if
you display the Catalog Items View in Visual Studio for an OS design that uses a
display, as illustrated in Figure 2–5.

Figure 2-5 Core OS components that depend on the display item

54 Chapter 2 Building and Deploying a Run-Time Image

Registry Files
Registry (.reg) files are used to initialize the system registry on the remote device.
These files are almost identical to registry files of Windows desktop operating
systems, except that the CE .reg files do not start with a header and version
information. If you accidentally double-click a CE .reg file on your development
computer and confirm that you want to add the settings to the desktop registry, a
dialog box appears to inform you that the .reg file is not a valid registry script. Another
difference is that CE .reg files can include conditional statements similar to .bib files,
so that you can import registry settings according to the selected catalog items. The
following snippet from the Platform.reg file of the Device Emulator BSP illustrates the
use of preprocessing conditions.

; Our variables

#define BUILTIN_ROOT HKEY_LOCAL_MACHINE\Drivers\BuiltIn

;#define PCI_BUS_ROOT $(BUILTIN_ROOT)\PCI

#define DRIVERS_DIR $(_PUBLICROOT)\common\oak\drivers

; @CESYSGEN IF CE_MODULES_RAMFMD

; @CESYSGEN IF FILESYS_FSREGHIVE

; HIVE BOOT SECTION

[HKEY_LOCAL_MACHINE\init\BootVars]

 "Flags"=dword:1 ; see comment in common.reg

; END HIVE BOOT SECTION

; @CESYSGEN ENDIF FILESYS_FSREGHIVE

; @CESYSGEN IF CE_MODULES_PCCARD

; @XIPREGION IF DEFAULT_DEVICEEMULATOR_REG

IF BSP_NOPCCARD !

#include "$(_TARGETPLATROOT)\src\drivers\pccard\pcc_smdk2410.reg"

#include "$(DRIVERS_DIR)\pccard\mdd\pcc_serv.reg"

[HKEY_LOCAL_MACHINE\Drivers\PCCARD\PCMCIA\TEMPLATE\PCMCIA]

 "Dll"="pcmcia.dll"

 "NoConfig"=dword:1

 "NoISR"=dword:1 ; Do not load any ISR.

 "IClass"=multi_sz:"{6BEAB08A-8914-42fd-B33F-61968B9AAB32}=

 PCMCIA Card Services"

ENDIF ; BSP_NOPCCARD !

; @XIPREGION ENDIF DEFAULT_DEVICEEMULATOR_REG

; @CESYSGEN ENDIF CE_MODULES_PCCARD

Database Files

Windows Embedded CE relies on database (.db) files to set up the default object
store. The object store is a transaction–based storage mechanism. In other words, it is
a repository for databases in RAM that operating system and applications can use for
persistent data storage. For example, the operating system uses the object store to

Lesson 1: Building a Run-Time Image 55

manage the stack and memory heap, to compress and decompress files, and to
integrate ROM–based applications and RAM–based data. The transaction-oriented
nature of the storage mechanism ensures data integrity even in the event of a sudden
power loss while data is being written to the object store. When the system restarts,
Windows Embedded CE either completes the pending transaction, or reverts to the
last known good configuration prior to the interruption. For system files, the last
known good configuration can mean that Windows Embedded CE must reload the
initial settings from ROM.

File System Files
File system (.dat) files, specifically Platform.dat and Project.dat, contain settings to
initialize the RAM file system. When you cold start the run-time image on a target
device, Filesys.exe processes these .dat files to create the RAM file system directories,
files, and links on the target device. The Platform.dat file is typically used for
hardware-related entries while the Project.dat file applies to the OS design, yet you can
use any existing .dat file to define file system settings because the build system
eventually merges all .dat files into one file named Initobj.dat.

For example, by customizing the Project.dat file, you can define root directories in
addition to the Windows directory for a run-time image. By default, items placed in
the ROM image appear in the Windows directory, yet by using a .dat file, you can
make files also appear outside the Windows directory. You can also copy or link to
files in the ROM Windows directory. This is particularly useful if you want to place
shortcuts on the desktop or add links to your applications to the Start menu. Similar
to .reg and .bib files, you can use IF and IF ! (if not) conditional blocks in .dat files.

The following listing illustrates how to use a Project.dat file to create two new root
directories named Program Files and My Documents, create a My Projects
subdirectory under Program Files, and map the Myfile.doc file from the Windows
directory into the My Documents directory.

Root:-Directory("Program Files")

Root:-Directory("My Documents")

Directory("\Program Files"):-Directory("My Projects")

Directory("\My Documents"):-File("MyFile.doc", "\Windows\Myfile.doc")

56 Chapter 2 Building and Deploying a Run-Time Image

Lesson Summary
A thorough understanding of the build system can help to decrease development time
and therefore project costs. You must know the steps performed during each phase of
the build process if you want to test source code changes quickly and without
unnecessary compilation cycles. You must also know the purpose and location of the
run-time image configuration files, such as .reg, .bib, .db, and .dat files, to create and
maintain OS designs efficiently.

The Windows Embedded CE build system combines the various .reg, .bib, .db, and
.dat files during the Make Run-time Image phase into consolidated files that the build
system then uses to configure the final run-time image. It is a good idea to check these
files if you want to verify that a specific setting or file made it into the final image
without having to load the run-time image on the target device. You can find the
various run-time image configuration files in the release directory of the OS design. If
you discover that expected entries are missing, check the conditional statements and
the environment variables and SYSGEN variables defined in your catalog items.

The build system creates the following run-time image configuration files during the
Make Run-time Image phase:

■ Reginit.ini Combines the Platform.reg, Project.reg, Common.reg, IE.reg,
Wceapps.reg, and Wceshell.reg files.

■ Ce.bib Combines the Config.bib, Platform.bib, Project.bib, and Subproject bib
files.

■ Initdb.ini Combines the Common.db, Platform.db, and Project.db files.

■ Initobj.dat Combines the Common.dat, Platform.dat, and Project.dat files.

Lesson 2: Editing Build Configuration Files 57

Lesson 2: Editing Build Configuration Files
In addition to run-time image configuration files, Windows Embedded CE also uses
build configuration files to compile and link source code into functional binary
components. Specifically, the build system relies on three types of source code
configuration files: Dirs, Sources, and Makefile. These files provide the Build tool
(Build.exe) and the compiler and linker (Nmake.exe) with information about the
source-code directories to traverse, the source code files to compile, and what type of
binary components to build. As a CE developer, you frequently must edit these files,
such as when cloning public catalog items, by following the procedures discussed in
Chapter 1.

After this lesson, you will be able to:

■ Identify the source code configuration files used during the build process.

■ Edit build configuration files to generate applications, DLLs, and static libraries.

Estimated lesson time: 25 minutes.

Dirs Files
Dirs files identify directories that contain source-code files to be included in the build
process. When Build.exe finds a Dirs file in the folder in which it is run, it traverses the
subdirectories referenced in the Dirs file to build the source code in these
subdirectories. Among other things, this mechanism enables you to update parts of a
run-time image selectively. If you make changes to the source code in Subproject1, you
can rebuild this subproject selectively by running Build.exe in the Subproject1
directory. You can also exclude directories in the source code tree from the build
process by removing the corresponding directory references from the Dirs file, or by
using conditional statements.

Dirs files are text files with a straightforward content structure. You can use the DIRS,
DIRS_CE, or OPTIONAL_DIRS keyword, and then specify the list of subdirectories
on a single line, or on multiple lines if you terminate each line with a backslash to
continue on the next line. Directories referenced by using the DIRS keyword are
always included in the build process. If you use the DIRS_CE keyword instead,
Build.exe only builds the source code if the source code is written specifically for a
Windows Embedded CE run-time image. The OPTIONAL_DIRS keyword designates
optional directories. Keep in mind, however, that Dirs files can contain only one DIRS
directive. Build.exe processes the directories in the order they are listed, so be sure to

58 Chapter 2 Building and Deploying a Run-Time Image

list prerequisites first. It is also possible to use the wildcard “*” to include all
directories.

The following listing, taken from default Windows Embedded CE components,
illustrates how to include source code directories in the build process by using Dirs
files.

C:\WINCE600\PLATFORM\DEVICEEMULATOR\SRC\Dirs

DIRS=common \

 drivers \

 apps \

 kitl \

 oal \

 bootloader

C:\WINCE600\PLATFORM\H4SAMPLE\SRC\DRIVERS\Dirs

DIRS= \

@CESYSGEN IF CE_MODULES_DEVICE

 buses \

 dma \

 triton \

@CESYSGEN IF CE_MODULES_KEYBD

 keypad \

@CESYSGEN ENDIF CE_MODULES_KEYBD

@CESYSGEN IF CE_MODULES_WAVEAPI

 wavedev \

@CESYSGEN ENDIF CE_MODULES_WAVEAPI

@CESYSGEN IF CE_MODULES_POINTER

 touch \

 tpagent \

@CESYSGEN ENDIF CE_MODULES_POINTER

@CESYSGEN IF CE_MODULES_FSDMGR

 nandflsh \

@CESYSGEN ENDIF CE_MODULES_FSDMGR

@CESYSGEN IF CE_MODULES_SDBUS

 sdhc \

@CESYSGEN ENDIF CE_MODULES_SDBUS

@CESYSGEN IF CE_MODULES_DISPLAY

 backlight \

@CESYSGEN ENDIF CE_MODULES_DISPLAY

@CESYSGEN IF CE_MODULES_USBFN

 usbd \

@CESYSGEN ENDIF CE_MODULES_USBFN

@CESYSGEN ENDIF CE_MODULES_DEVICE

@CESYSGEN IF CE_MODULES_DISPLAY

 display \

@CESYSGEN ENDIF CE_MODULES_DISPLAY

Lesson 2: Editing Build Configuration Files 59

NOTE Editing Dirs files in Solution Explorer

The Solution Explorer in Visual Studio with Platform Builder for Windows Embedded CE 6.0 R2
uses Dirs files to generate a dynamic view of the Windows Embedded CE directory structure in
an OS design project. However, you should not add or remove directories in Solution Explorer,
because editing Dirs files in Solution Explorer can lead to a changed build order, which can
result in build errors that require a second build to resolve.

Sources Files
I f you che ck t he fo lder s and f i l e s o f a s t andard OS des ign , such as
C:\Wince600\OSDesigns\OSDesign1, you will find that the project includes no Dirs
files by default. If you include subprojects for custom components and applications,
you will find a Sources file in each subproject’s root folder instead. The Sources file
provides more detailed information about the source-code files, including build
directives, which a Dirs file cannot provide. However, a source-code directory can only
contain one Dirs file or one Sources file, not both. That means that a directory with a
Sources file cannot contain subdirectories with more code. During the build process,
Nmake.exe uses the Sources files to determine what file type to build (.lib, .dll, or
.exe), and how to build it. Similar to Dirs files, Sources files expect you to specify
declarations in a single line, unless you terminate the line with a backslash to
continue the declaration on the next line.

The following listing shows the content of a Sources file in the Device Emulator BSP.
By default, you can find this file in the C:\Wince600\Platform\DeviceEmulator
\Src\Drivers\Pccard folder.

WINCEOEM=1

TARGETNAME=pcc_smdk2410

TARGETTYPE=DYNLINK

RELEASETYPE=PLATFORM

TARGETLIBS=$(_COMMONSDKROOT)\lib\$(_CPUINDPATH)\coredll.lib \

 $(_SYSGENOAKROOT)\lib\$(_CPUINDPATH)\ceddk.lib

SOURCELIBS=$(_SYSGENOAKROOT)\lib\$(_CPUINDPATH)\pcc_com.lib

DEFFILE=pcc_smdk2410.def

DLLENTRY=_DllEntryCRTStartup

INCLUDES=$(_PUBLICROOT)\common\oak\drivers\pccard\common;$(INCLUDES)

SOURCES= \

 Init.cpp \

 PDSocket.cpp \

60 Chapter 2 Building and Deploying a Run-Time Image

 PcmSock.cpp \

 PcmWin.cpp

#xref VIGUID {549CAC8D_8AF0_4789_9ACF_2BB92599470D}

#xref VSGUID {0601CE65_BF4D_453A_966B_E20250AD2E8E}

You can define the following directives in a Sources file:

■ TARGETNAME This is the name of the target file, without file name extension.

■ TARGETTYPE Defines the type of file to be built, as follows:

■ DYNLINK A dynamic-link library (.dll).

■ LIBRARY A static-link library (.lib).

■ PROGRAM An executable file (.exe).

■ NOTARGET Build no file.

■ RELEASETYPE Specifies the directory where Nmake.exe places the target file,
as follows:

■ PLATFORM PLATFORM\<BSP Name>\<Target>.

■ OAK, SDK, DDK %_PROJECTROOT%\Oak\<Target>.

■ LOCAL The current directory.

■ CUSTOM A directory specified in TARGETPATH.

■ MANAGED %_PROJECTROOT%\Oak\<Target>\Managed.

■ TARGETPATH Defines the path for RELEASETYPE=CUSTOM.

■ SOURCELIBS Specifies libraries to be linked with the target file specified in
TARGETNAME to create the final binary output. This option is typically used for
creating a .lib file but not .dll or .exe files.

■ TARGETLIBS Specifies additional libraries and object files to link to the final
binary output, typically used for creating .dll or .exe files but not for .lib files.

■ INCLUDES Lists additional directories to search for include files.

■ SOURCES Defines the source files to be used for this particular component.

■ ADEFINES Specifies parameters for the assembler.

■ CDEFINES Specifies parameters for the compiler, which can be used as
additional DEFINE statements for use in IFDEF statements.

■ LDEFINES Sets linker definitions.

■ RDEFINES Specifies DEFINE statements for the resource compiler.

Lesson 2: Editing Build Configuration Files 61

■ DLLENTRY Defines the entry point for a DLL.

■ DEFFILE Defines the .def file which contains a DLL’s exported symbols.

■ EXEENTRY Sets the entry point of an executable file.

■ SKIPBUILD Marks the build of the target as successful without an actual build
of the target.

■ WINCETARGETFILE0 Specifies nonstandard files that should be built before
building the current directory.

■ WINCETARGETFILES This macro definition specifies nonstandard target files
that Build.exe should build after Build.exe links all other targets in the current
directory.

■ WINCE_OVERRIDE_CFLAGS Defines compiler flags to override default
settings.

■ WINCECPU Specifies that the code requires a certain CPU type and should
only be built for that particular CPU.

NOTE Performing specific actions before and after the build

In addition to the standard directives, Windows Embedded CE Sources files support the direc-
tives PRELINK_PASS_CMD and POSTLINK_PASS_CMD. You can use these directives to perform
custom actions based on command-line tools or batch files before and after the build process,
such as PRELINK_PASS_CMD=pre_action.bat and POSTLINK_PASS_CMD=post_action.bat. This is
useful, for example, if you want to copy additional files to the release directory when developing
a custom application.

Makefile Files
If you look closer at the contents of a subproject folder, you can also find a file named
Makefile to provide default preprocessing directives, commands, macros, and other
expressions to Nmake.exe. However, in Windows Embedded CE, this Makefile
includes only a single line that references %_MAKEENVROOT%\Makefile.def. By
default , t he environment variable %_MAKEENVROOT% points to the
C:\Wince600\Public\Common\Oak\Misc folder and the Makefile.def file in this
location is the standard Makefile for all CE components, so you should not modify
this file. Among other things, the Makefile.def file contains include statements to pull
in Sources file, such as !INCLUDE $(MAKEDIR)\sources, which specify the Sources
file from the subproject folder. You should edit the Sources file in the subproject
folder to adjust the way Nmake.exe builds the target file.

62 Chapter 2 Building and Deploying a Run-Time Image

Lesson Summary
The Windows Embedded CE 6.0 R2 development environment relies on Makefile,
Sources, and Dirs files to control how Build.exe and Nmake.exe compile and link
source code into functional binary components for the run-time image. You can use
Dirs files to define the source code directories included in the build process or
Sources files to specify compile and build directives in greater detail. The Makefile, on
the other hand, requires no customization. It merely references the default
Makefile.def file with general preprocessing directives, commands, macros, and other
processing instructions for the build system. You must thoroughly understand the
purpose of files and how they control the build process if you want to clone public
catalog items or create new components efficiently.

Lesson 3: Analyzing Build Results 63

Lesson 3: Analyzing Build Results
You are certain to encounter build errors during the software-development cycle. In
fact, it is not uncommon to use compile errors as a syntax check for source code,
although IntelliSense® and other coding aids available in Visual Studio 2005 help to
reduce the amount of typos and other syntax errors. Syntax errors are relatively
uncomplicated to fix because you can double-click the corresponding error message
in the Output window and jump right to the critical line in the source code file.
However, compiler errors are only one type of build errors that can occur. Other
common build errors are math errors, expression evaluation errors, linker errors, and
errors related to run-time image configuration files. In addition to error messages, the
build system also generates status messages and warnings to help you analyze and
diagnose build issues. The amount of information generated during the build process
can be overwhelming. You need to know the different types and general format of
build messages if you want to identify, locate, and solve build errors efficiently.

After this lesson, you will be able to:

■ Locate and analyze build reports.

■ Diagnose and solve build issues.

Estimated lesson time: 15 minutes.

Understanding Build Reports
When you perform a build either in the Visual Studio IDE or the command prompt,
the build process outputs a significant amount of build information. The build system
tracks this information in a Build.log file. Details about compilation or linker
warnings and errors also can be found in the Build.wrn and Build.err files. If you
started a complete build or a Sysgen operation for an OS design by using one of the
corresponding commands on the Build menu in Visual Studio, the build system
writes these files in the %_WINCEROOT% folder (by default, C:\Wince600). On the
other hand, if you perform a build for only a particular component, such as by right-
clicking a subproject folder in Solution Explorer and clicking the Build command
from the context menu, the build system writes these files in that specific directory. In
either case, the Build.wrn and Build.err files only exist if you encounter warnings and
errors during the build process. However, you do not need to open and parse through
these files in Notepad or another plain-text editor. Visual Studio 2005 with Platform
Builder for CE 6.0 R2 displays this information during the build process in the

64 Chapter 2 Building and Deploying a Run-Time Image

Output window. You can also examine status messages, warnings, and errors in the
Error List window that you can display by clicking Error List, which is available under
Other Windows on the View menu.

Figure 2–6 shows the Output window and the Error List window in undocked view.
The Output window displays the Build.log content if you select Build from the Show
Output From list box. The Error List window displays the contents Build.wrn and
Build.err files.

Figure 2-6 Output window and Error List window with build information in Visual Studio

Specifically, you can find the following information in the build log files:

■ Build.log Contains information about the individual commands issued within
each phase during the build process. This information is useful for analyzing
both the build process in general, and build errors in particular.

Lesson 3: Analyzing Build Results 65

■ Build.wrn Contains information about warnings generated during the build
process. If possible, try to eliminate or at least identify the reasons for the
warnings. The information in Build.wrn is also included in Build.log.

■ Build.err Contains specific information about build errors encountered during
the build process. This information is also available with additional details in
Build.log. This file is created only when an error occurs.

NOTE Identifying the build step

The build system keeps track of skipped and entered build phases in the Build.log file. For exam-
ple, the entry CEBUILD: Skipping directly to SYSGEN phase indicates that the build system
skipped the Compile phase for a component. You can determine where the Sysgen phase
begins, how the build process transitions from SYSGEN to BUILD, and how BUILD eventually
leads to MAKEIMG.

Troubleshooting Build Issues
While analyzing build log files can give you great insight into the build process in
general, it is most useful when troubleshooting build errors. If an error message is
related to a source code file, you can jump to the relevant line of code by double-
clicking the message entry in the Error List window. However, not all build errors are
related to source code. Linker errors due to missing library references, sysgen errors
due to missing component files, copy errors due to exhausted disk capacities, and
make run-time image errors due to incorrect settings in run-time image configuration
files can also cause a build process to fail.

Errors during the Sysgen Phase
Sysgen errors are generally the result of missing files. The Build.log file might provide
detailed information about the reason. Components that you recently added to or
removed from an OS design can cause this type of error if the required dependencies
are unavailable. To diagnose a Sysgen error, it is a good idea to verify all changes
related to catalog items and their dependencies. Also note that some components
require you to perform a clean Sysgen build instead of a regular Sysgen cycle.
Typically, you should not use the Clean Sysgen command because performing a clean
Sysgen in Release or Debug build configuration requires you to perform a regular
Sysgen in the other build configuration as well. However, when adding or removing
catalog items and encountering Sysgen build errors afterward, during the next
regular Sysgen, you might have to perform a clean Sysgen build to solve the issue.

66 Chapter 2 Building and Deploying a Run-Time Image

Errors during the Build Phase
Build errors are typically caused by compiler errors or linker errors. Compiler errors
are syntax errors, missing or illegal parameters in function calls, divisions by zero and
similar issues that prevent the compiler from generating valid binary code. By double-
clicking a compiler error, you can jump to the critical line of code. Keep in mind,
however, that compiler errors can be the results of other compiler errors. For
example, an incorrect variable declaration can cause numerous compiler errors if the
variable is used in many places. It is generally a good idea to start at the top of the
error list, fix the code, and recompile. Even small code changes can often eliminate a
very large number of errors from the list.

Linker errors are harder to troubleshoot than compiler errors. They are typically the
result of missing or incompatible libraries. Incorrectly implemented APIs can also
result in linker errors if the linker cannot resolve external references to exported DLL
functions. Another common cause has its root in incorrectly initialized environment
variables. Build files, specifically the Sources file, use environment variables instead of
hard-coded directory names to point to referenced libraries. If these environment
variables are not set, the linker will not be able to locate the libraries. For example,
%_WINCEROOT% must point to C:\Wince600 if you installed Windows Embedded
CE in the default configuration and %_FLATRELEASEDIR% must point to the
current release directory. To verify the values of environment variables, open the Build
menu in Visual Studio and select Open Release Directory in Build Window, and then
at the command prompt use the set command with or without an environment
variable, such as set _winceroot. Running the set command without parameters
displays all environment variables, but be aware that this list is long.

Errors during the Release Copy Phase
Buildrel errors encountered during the Release Copy phase are generally a sign of
inadequate hard drive space. During the Release Copy phase, the build system copies
files to the release directory. It might be necessary to free up hard drive space or place
the OS design folder on a different drive. Make sure that the new path to the OS
design folder contains no spaces because spaces in the path or in the OS design name
cause errors during the build process.

Lesson 3: Analyzing Build Results 67

Errors during the Make Run-Time Image Phase
Errors encountered during this final phase in the build process generally result from
missing files. This can happen if a component failed to build in an earlier step, but the
build process nevertheless continued to proceed to the Make Run-time Image phase.
Syntax errors in .reg files or .bib files can lead to this situation when the build system
is unable to create the Reginit.ini file or Ce.bib file. Makeimg.exe calls the FMerge tool
(FMerge.exe) during the build process to create these files, and if this fails, such as
due to incorrect conditional statements, you encounter a make-image error. Another
possible error is Error: Image Exceeds (X), which means the image is larger than the
maximum possible size specified in Config.bib.

Lesson Summary
Platform Builder for Windows Embedded CE 6.0 R2 integrates with the build-logging
system of Visual Studio 2005 to provide you with convenient access to status
information, warnings, and error messages generated during the build process and
tracked in Build.log, Build.wrn, and Build.err files. Depending on how you start the
build process in Visual Studio, these files reside either in the %_WINCEROOT%
folder or in a subproject directory, yet the actual location of the files is not important
because you can analyze the content from these files directly in the Output window
and the Error List window in Visual Studio. It is not necessary to open these files in
Notepad or another text editor.

By analyzing build log files, you can gain a better understanding of the build process
in general and build issues in particular. Typical build issues you might encounter
occasionally are compiler errors, linker errors, Sysgen errors, build errors, and other
errors generated during the Release Copy and Make Run-time Image phases. If a build
error is related directly to a line in a source code file, you can double-click the message
entry in the Error List window, and Visual Studio automatically opens the source-
code file and jumps to the critical line. Other issues, such as buildrel errors due to
inadequate hard drive space, require you to perform troubleshooting steps outside of
the Visual Studio IDE.

68 Chapter 2 Building and Deploying a Run-Time Image

Lesson 4: Deploying a Run-Time Image on a
Target Platform

Having solved all build issues and successfully generated a run-time image, you are
ready to deploy Windows Embedded CE on the target device. There are several ways
to accomplish this task. The method you choose depends on the startup process you
use to load Windows Embedded CE on the target device. There are several ways you
can start a Windows Embedded CE 6.0 run-time image. You can start an image
directly from ROM, in which case you must deploy the run-time image on the target
device by using a ROM tool. You can also use a boot loader, and then either download
the run-time image every time the device starts or store the image in persistent
memory for reuse. Windows Embedded CE 6.0 R2 comes with generic boot-loader
code that you can customize according to your specif ic needs. It is also
straightforward to implement a third-party boot loader. Essentially, Windows
Embedded CE can accommodate almost any start environment, and makes it easy to
download new run-time images quickly and conveniently during the development
cycle and for release to the end user.

After this lesson, you will be able to:

■ Decide how to deploy a run-time image on a target device.

■ Configure Platform Builder to select the correct deployment layer.

Estimated lesson time: 15 minutes.

Choosing a Deployment Method
In order to deploy a run-time image, you must establish a connection to the target
device. This requires you to configure several communication parameters that
determine how Platform Builder communicates with the device.

The Core Connectivity infrastructure of Windows Embedded CE supports various
download methods and transport mechanisms to accommodate hardware platforms
with varying communication capabilities. To define the communication parameters
for your target device, open the Target menu in Visual Studio and select Connectivity
Options, which displays the Target Device Connectivity Options dialog box. By
default, Platform Builder provides a target device named CE Device in the Target
Device list box, as illustrated in Figure 2–7, but you can also create additional devices
with unique names by clicking the Add Device link.

Lesson 4: Deploying a Run-Time Image on a Target Platform 69

Figure 2-7 Target Device Connectivity Options window

Download Layer

The Download list box and associated Settings button enable you to configure the
download service used for downloading the run-time image to your target device. The
Core Connectivity infrastructure supports the following download layers for
deploying a run-time image:

■ Ethernet Downloads the run-time image over an Ethernet connection. Use the
Settings button to configure the Ethernet download service. The development
workstation and the target device must be on the same subnet; otherwise, you
cannot connect to the target device.

■ Serial Downloads the run-time image over an RS232 connection. Use the
Settings button to configure the port, baud rate, and other serial communication
parameters.

■ Device Emulator (DMA) Downloads the run-time image to a device emulator
through Direct Memory Access (DMA). Use the Settings button to configure the
device emulator.

■ USB Downloads the run-time image over a Universal Serial Bus (USB)
connection. There are no settings to configure.

70 Chapter 2 Building and Deploying a Run-Time Image

■ Image Update Updates the image in the device’s flash memory. There are no
settings to configure.

■ None Select this option if you do not want to download or update the run-time
image.

Transport Layer

After transferring the run-time image to the remote device, you can attach to the
device if you enabled Kernel Independent Transport Layer (KITL) in the OS design.
In general, the selected kernel transport service should match the download service
that you selected in the Download list box. The Core Connectivity infrastructure
supports the following transport layer options:

■ Ethernet Communicates with the target device over an Ethernet connection.
The connection uses the same settings as the download service.

■ Serial Communicates with the target device over an RS232 connection. The
connection uses the same settings as the download service.

■ Device Emulator (DMA) Communicates with a device emulator through DMA.

■ USB Communicates with the target device over a USB connection.

■ None Disables communication with the target device.

Debugger Options
If you enabled support for one or more debuggers in the OS design, the debugger
names will appear as options in the Debugger list box. By default, the following
debugger options are available:

■ Sample Device Emulator eXDI2 Driver This is a sample Extensible Resource
Identifier (XRI) Data Interchange (XDI) driver included in Windows Embedded
CE 6.0 R2. XDI is a standard hardware-debugging interface.

■ KdStub This is the Kernel Debugger. KdStub stands for kernel debugger stub,
which instructs Platform Builder and Visual Studio to use the software debugger.

■ CE Dump File Reader If you added the Error Report Generator catalog item to
your OS design, you can use this option for postmortem debugging.

■ None Select this option if you do not want to use a debugger.

Lesson 4: Deploying a Run-Time Image on a Target Platform 71

Attaching to a Device
Having configured the device connection, you are ready to transfer the run-time image
to the target device or device emulator by using the Core Connectivity infrastructure.
This is accomplished in Visual Studio 2005 by using the Attach Device command that
is available on the Target menu. Even if you do not plan to use KITL or the Core
Connectivity infrastructure for debugging, you must attach to the device so that
Platform Builder can download the run-time image.

Following the image download, the start process commences, KITL becomes active if
enabled on the target device, and you can use the Kernel Debugger to follow the start
process, and debug operating system components and application processes. By
using KITL, you can also exploit remote tools available in Visual Studio with Platform
Builder on the Target menu, such as File Viewer to interact with the device’s file
system, Registry Editor to access the device’s registry settings, Performance Monitor
to analyze resource utilization and response times, and Kernel Tracker and other
remote tools to view detailed information on the running system. You can find more
information about system debugging in Chapter 4, “Debugging and Testing the
System.”

Lesson Summary
Windows Embedded CE supports run-time image deployment over a variety of device
connections to accommodate hardware platforms with varying requirements and
capabilities, including Ethernet connections, serial connections, DMA, and USB
connections. For example, DMA is the right choice if you want to deploy CE 6.0 R2 on
a Device Emulator. You only need to configure the communication parameters and
you are ready to deploy Windows Embedded CE by clicking the Attach Device
command on the Target menu in Visual Studio 2005 with Platform Builder.

EXAM TIP

To pass the certification exam, you must be familiar with the varioust ways to deploy a Windows
Embedded CE run-time image. In particular, make sure you know how to deploy a run-time
image for a Device Emulator.

72 Chapter 2 Building and Deploying a Run-Time Image

Lab 2: Building and Deploying a Run-Time Image
In this lab, you build and deploy an OS design based on the Device Emulator BSP,
analyze the build information in the Visual Studio Output window to identify the
start of the various build phases, and then configure a connection to a target device in
order to download the run-time image. To demonstrate how to customize a target
device, you modify the Device Emulator configuration to support a larger screen
resolution and to enable network communication. In a final step, you download the
run-time image and attach to the target device with the Kernel Debugger, so you can
examine the Windows Embedded CE start process in detail. To create the initial OS
design in Visual Studio, follow the procedures outlined in Lab 1, “Creating,
Configuring, and Building an OS Design.”

NOTE Detailed step-by-step instructions

To help you successfully master the procedures presented in this Lab, see the document
“Detailed Step-by-Step Instructions for Lab 2” in the companion material for this book.

Build a Run-Time Image for an OS Design
1. After completing Lab 1, select Sysgen under Advanced Build Commands on the

Build menu in Visual Studio, as illustrated in Figure 2–8. Alternatively, you can
select Build Solution under the Build menu, which will perform a build starting
with the Sysgen step.

TIP Sysgen operations

Sysgen operations can take up to 30 minutes to complete. To save time, do not run Sys-
gen every time you change the OS design. Instead, run Sysgen after adding and removing
all desired components.

2. Follow the build process in the Output window. Examine the build information
to identify the SYSGEN, BUILD, BUILDREL, and MAKEIMG steps. You can
press Ctrl+F to display the Find And Replace dialog box, and then search for the
following text to identify the start of these phases:

a. Starting Sysgen Phase For Project The SYSGEN steps start.

b. Build Started With Parameters The BUILD steps start.

c. C:\WINCE600\Build.log The BUILDREL steps start.

d. BLDDEMO: Calling Makeimg—Please Wait The MAKEIMG steps starts.

Lab 2: Building and Deploying a Run-Time Image 73

3. Open the C:\Wince600 folder in Windows Explorer. Verify that Build.* files
exist.

4. Open the Build.* files in a text editor, such as Notepad, and examine the content.

Figure 2-8 Building an OS design

Configure Connectivity Options
1. In Visual Studio, open the Target menu and select Connectivity Options to

display the Target Device Connectivity Options dialog box.

2. Verify that CE Device is selected in the Target Device list box.

3. Select Device Emulator (DMA) from the Download list box.

4. Select Device Emulator (DMA) from the Transport list box.

5. Select KdStub from the Debugger list box, as illustrated in Figure 2–9.

74 Chapter 2 Building and Deploying a Run-Time Image

Figure 2-9 Setting Target Device Connectivity Options

Change the Emulator Configuration
1. Next to the Download list box, click the Settings button.

2. In the Emulator Properties dialog box, switch to the Display tab.

3. Change the Screen Width to 640 pixels and the Screen Height to 480 pixels.

4. Switch to the Network tab.

5. Select the Enable NE2000 PCMCIA Network Adapter And Bind To check box,
then select the Connected Network Card option from the list box, as illustrated
in Figure 2–10, and then click OK.

6. Click Apply to save the new device configuration.

7. Click Close to close the Target Device Connectivity Options dialog box.

Lab 2: Building and Deploying a Run-Time Image 75

Figure 2-10 Device Emulator network options

Test a Run-Time Image on the Device Emulator
1. In Visual Studio, open the Target menu, and then click Attach Device.

2. Verify that Visual Studio downloads the run-time image to the target device. The
download can take several minutes to complete.

3. Follow the debug messages during the start process in the Visual Studio Output
window.

4. Wait until Windows Embedded CE has completed the start process, and then
interact with the Device Emulator and test the features of your OS design, as
illustrated in Figure 2–11.

76 Chapter 2 Building and Deploying a Run-Time Image

Figure 2-11 Windows Embedded CE device emulator

Chapter 2 Review 77

Chapter Review
The Windows Embedded CE build process includes several phases and relies on a
variety of build and run-time image configuration files to compile the source code and
create the run-time image. It includes a compile phase to generate .exe files, static
libraries, DLLs, and binary resource (.res) files for the BSP and subprojects; a Sysgen
phase to filter and copy source code based on SYSGEN variables from the Public
folder for catalog items selected in the OS design, and create a set of run-time image
configuration files; a Release Copy phase to copy the files from the BSP and
subprojects required to build the run-time image into the release directory; and finally
a Make Run-time Image phase to create the run-time image from the content in the
release directory according to the setting specified in .bib, .reg, .db, and .dat files.

You can examine the build process if you analyze the information that Platform
Builder generates and tracks in Build.log, Build.wrn, and Build.err files. The Build.log
file contains detailed information about every build command issued in each build
phase. Build.wrn and Build.err contain the same information, but filtered for
warnings and errors encountered during the build process. You do not need to open
these text files directly in Notepad. It is more convenient to work with build status
information and error messages in Visual Studio. The Output window and the Error
List window provide convenient access.

Build errors can occur for a variety of reasons. The most common causes are compiler
and linker errors. For example, running build commands in an incorrectly initialized
build environment will lead to linker errors when environment variables that identify
library directories in the Sources file point to invalid locations. Other important build
configuration files, such as Dirs files and Makefile.def, can also rely on SYSGEN
variables and environment variables in conditional statements and in directory paths.

Having successfully generated a run-time image, you can deploy Windows Embedded
CE on a target device. This requires you to configure a device connection based on the
Core Connectivity infrastructure. The final deployment step is simply to click the
Attach Device command that you can find on the Target menu in Visual Studio with
Platform Builder for Windows Embedded CE 6.0 R2.

It is important that you are familiar with the following configuration files, which
control the Windows Embedded CE build process:

■ Binary image builder (.bib) files Configure the memory layout and determine
the files included in the run-time image.

78 Chapter 2 Review

■ Registry (.reg) files Initialize the system registry on the target device.

■ Database (.db) files Set up the default object store.

■ File system (.dat) files Initialize the RAM file system layout at start time.

■ Dirs files Determine which directories to include in the build process.

■ Sources files Define preprocessing directives, commands, macros, and other
processing instructions for the compiler and linker. Take the place of Makefile
files in the Visual Studio with Platform Builder IDE.

■ Makefile files Reference the default Makefile.def file and should not be edited.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ Sysgen

■ Buildrel

■ Flat release directory

■ Connectivity options

■ KITL

Suggested Practice
To help you successfully master the exam objectives presented in this chapter,
complete the following tasks:

Start the Build Process from the Command Line
To increase your understanding of the Windows Embedded CE build processes,
perform the following steps:

1. Sysgen process Run sysgen –q from the command line after setting an
environment variable in a catalog item.

2. Build process Open a Command Prompt window, change into the current BSP
folder (%_TARGETPLATROOT%) and run build-c with and without setting the
WINCEREL environment variable to 1 (set WINCEREL=1). Check the content
of the %_FLATRELEASEDIR% folder before and after the build.

Chapter 2 Review 79

Deploy Run-Time Images
Deploy a Windows Embedded CE run-time image to a Device Emulator by using
different download, transport, and debugging settings for the target device in
Platform Builder.

Clone a Public Catalog Component Manually

Clone a component from the %_WINCEROOT%\Public folder by copying the source
files to a BSP, as explained in Chapter 1, “Customizing the Operating System Design.”
Next, run sysgen_capture to create a Sources file that defines the component
dependencies. Modify the new Sources file to build the component as part of your
BSP. For detailed step-by-step information to accomplish this advanced development
task, read the section “Using the Sysgen Capture Tool” in the Platform Builder for
Microsoft Windows Embedded CE product documentation available on the
Microsoft MSDN® website at http://msdn2.microsoft.com/en-us/library/
aa924385.aspx.

81

Chapter 3

Performing System Programming

System performance is critical for user productivity. It directly influences the user’s
perception of a device. In fact, it is not uncommon for users to judge the usefulness of
a device based on the performance of the system and the look and feel of the user
interface. By providing too complex of an interface, you can confuse users and open
your device to potential security risks or unexpected user manipulations. By using the
incorrect APIs, or incorrect applications architecture in a multithreaded environment,
you may significantly impact performance. Performance optimization and system
customization are real challenges for firmware providers. This chapter discusses the
tools and highlights best practices to achieve optimal system response times on target
devices.

Exam objectives in this chapter:

■ Monitoring and optimizing system performance

■ Implementing system applications

■ Programming with threads and thread synchronization objects

■ Implementing exception handling in drivers and applications

■ Supporting power management at the system level

Before You Begin
To complete the lessons in this chapter, you must have the following:

■ A thorough understanding of real-time systems design concepts, such as
scheduler functionality in an operating system, interrupts, and timers.

■ Basic knowledge of multithreaded programming, including synchronization
objects.

■ A development computer with Microsoft® Visual Studio® 2005 Service Pack 1
and Platform Builder for Microsoft Windows® Embedded CE 6.0 installed.

82 Chapter 3 Performing System Programming

Lesson 1: Monitoring and Optimizing
System Performance

Performance monitoring and optimization are important tasks in the development of
small-footprint devices. The need for optimized system performance remains critical
because of an ever-growing number of increasingly complex applications and the
requirement for intuitive and therefore resource-intensive user interfaces.
Performance optimization requires firmware architects and software developers to
constrain resource consumption within their system components and applications so
that other components and applications can use the available resources. Whether
developing device drivers or user applications, optimized processing algorithms can
help to save processor cycles, and efficient data structures can preserve memory.
Tools exist at all system levels to identify performance issues within and between
drivers, applications, and other components.

After this lesson, you will be able to:

■ Identify the latency of an interrupt service routine (ISR).

■ Improve the performance of a Windows Embedded CE system.

■ Log and analyze system performance information.

Estimated lesson time: 20 minutes.

Real-Time Performance
Drivers, applications, and OEM adaptation layer (OAL) code impact system and real-
time performance. Although Windows Embedded CE may be used in real-time and
non-real-time configurations, it is important to note that using non-real-time
components and applications can decrease system performance in a real-time
operating system (OS) configuration. For example, you should keep in mind that
demand paging, device input/output (I/O), and power management are not designed
for real-time devices. Use these features carefully.

Demand Paging
Demand paging facilitates memory sharing between multiple processes on devices
with limited RAM capacity. When demand paging is enabled, Windows Embedded
CE discards and removes memory pages from active processes under low-memory
conditions. However, to keep the code of all active processes in memory, disable

Lesson 1: Monitoring and Optimizing System Performance 83

demand paging for the entire operating system or for a specific module, such as a
dynamic-link library (DLL) or device driver.

You can disable demand paging by using the following methods:

■ Operating system Edit the Config.bib file and set the ROMFLAGS option in
the CONFIG section.

■ DLLs Use the LoadDriver function instead of the LoadLibrary function to load
the DLL into memory.

■ Device drivers Add the DEVFLAGS_LOADLIBRARY flag to the Flags registry
entry for the driver. This flag causes Device Manager to use the LoadLibrary
function instead of the LoadDriver function to load the driver.

Windows Embedded CE allocates and uses memory as usual, but does not discard it
automatically when you disable demand paging.

System Timer
The system timer is a hardware timer that generates system ticks at a frequency of one
tick per millisecond. The system scheduler uses this timer to determine which
threads should run at what time on the system. A thread is the smallest executable
unit within a process that is allocated processor time to execute instructions in the
operating system. You can stop a thread for an amount of time by using the Sleep
function. The minimum value that you can pass to the Sleep function is 1 (Sleep(1)),
which stops the thread for approximately 1 millisecond. However, the sleep time is
not exactly 1 millisecond because the sleep time includes the current system timer
tick plus the remainder of the previous tick. The sleep time is also linked to the
priority of the thread. The thread priority determines the order in which the operating
system schedules the threads to run on the processor. For those reasons, you should
not use the Sleep function if you need accurate timers for real-time applications. Use
dedicated timers with interrupts or multimedia timers for real-time purposes.

Power Management
Power management can affect system performance. When the processor enters the
Idle power state, any interrupt generated by a peripheral or the system scheduler
causes the processor to exit this state, restore the previous context, and invoke the
scheduler. Power context switching is a time-consuming process. For detailed
information about the power management features of Windows Embedded CE, see
the section “Power Management” in the Windows Embedded CE 6.0 documentation

84 Chapter 3 Performing System Programming

available on the Microsoft MSDN® website at http://msdn2.microsoft.com/en-us/
library/aa923906.aspx.

System Memory
The kernel allocates and manages system memory for heaps, processes, critical
sections, mutexes, events, and semaphores. Yet, the kernel does not completely free
the system memory when releasing these kernel objects. Instead, the kernel holds on
to the system memory to reuse it for the next allocation. Because it is faster to reuse
allocated memory, the kernel initializes the system memory pool during the startup
process and allocates further memory only if no more memory is available in the pool.
System performance can decrease depending how processes use virtual memory,
heap objects, and the stack.

Non-Real-Time APIs

When calling system APIs, or Graphical Windows Event System (GWES) APIs, be
aware that some APIs rely on non-real-time features, such as for window drawing.
Forwarding calls to non-real-time APIs may dramatically decrease system
performance. Consequently, you should make sure that your APIs in real-time
applications are real-time compliant. Other APIs, such as ones used for accessing a file
system or hardware, can have an impact on performance because these APIs may use
blocking mechanisms, such as mutexes or critical sections, to protect resources.

NOTE Non-real-time APIs

Non-real-time APIs can have a measurable impact on real-time performances and, unfortu-
nately, the Win32® API documentation provides little detail on real-time issues. Practical experi-
ence and performance testing can help you choose the right functions.

Real-Time Performance Measurement Tools
Windows Embedded CE includes many per formance monitor ing and
troubleshooting tools that can be used to measure the impact of Win32 APIs on
system performance. These tools are helpful when identifying inefficient memory use,
such as an application not releasing the system memory it allocates.

The following Windows Embedded CE tools are particularly useful to measure the
real-time performance of your system components and applications:

Lesson 1: Monitoring and Optimizing System Performance 85

■ ILTiming Measures Interrupt Service Routine (ISR) and Interrupt Service
Thread (IST) latencies.

■ OSBench Measures system performance by tracking the time the kernel spends
managing kernel objects.

■ Remote Performance Monitor Measures system performance, including
memory usage, network throughput, and other aspects.

Interrupt Latency Timing (ILTiming)
The ILTiming tool is particularly useful for Original Equipment Manufacturers
(OEMs) who want to measure ISR and IST latencies. Specifically, ILTiming enables
you to measure the time it takes to invoke an ISR after an interrupt occurred (ISR
latency) and the time between when the ISR exits and the IST actually starts (IST
latency). This tool uses a system hardware tick timer by default, but it is also possible
to use alternative timers (high-performance counters).

NOTE Hardware timer restrictions

Not all hardware platforms provide the required timer support for the ILTiming tool.

The ILTiming tool relies on the OALTimerIntrHandler function in the OAL to
implement the ISR for managing the system tick interrupt. The timer interrupt
handler stores the current time and returns a SYSINTR_TIMING interrupt event,
which an ILTiming application thread waits to receive. This thread is the IST. The time
elapsed between the reception of the interrupt in the ISR and the reception of the
SYSINTR_TIMING event in the IST is the IST latency that the ILTiming tool measures.

You can find the ILTiming tool’s source code in the %_WINCEROOT%\Public
\Common\Oak\Utils folder on your development computer if you have installed
Microsoft Platform Builder for Windows Embedded CE 6.0 R2. The ILTiming tool
supports several command-line parameters that you can use to set the IST priority
and type according to the following syntax:

iltiming [-i0] [-i1] [-i2] [-i3] [-i4] [-p priority] [-ni] [-t interval] [-n interrupt] [-all]
[-o file_name] [-h]

Table 3–1 describes the individual ILTiming command-line parameters in more
detail.

86 Chapter 3 Performing System Programming

Table 3-1 ILTiming parameters

Command-Line
Parameter

Description

-i0 No idle thread. This is equivalent to using the -ni parameter.

-i1 One thread spinning without performing any actual
processing.

-i2 One thread spinning, calling SetThreadPriority
(THREAD_PRIORITY_IDLE).

-i3 Two threads alternating SetEvent and WaitForSingleObject
with a 10-second timeout.

-i4 Two threads alternating SetEvent and WaitForSingleObject
with an infinite timeout.

-i5 One thread spinning, calling either VirtualAlloc (64 KB),
VirtualFree, or both. Designed to flush the cache and the
translation look-aside buffer (TLB).

-p priority Specifies the IST priority (zero through 255). The default
setting is zero for highest priority.

-ni Specifies no idle priority thread. The default setting is equal to
the number of idle priority thread spins. This is equivalent to
using the -i0 parameter.

-t interval Specifies the SYSINTR_TIMING timing interval, with clock
ticks in milliseconds. The default setting is five.

-n interrupt Specifies the number of interrupts. Using this parameter you
can specify how long the test will run. The default setting is 10.

-all Specifies to output all data. The default setting is to output the
summary only.

-o file_name Specifies to output to file. The default setting is to output to the
debugger message window.

Lesson 1: Monitoring and Optimizing System Performance 87

NOTE Idle threads

ILTiming may create idle threads (command-line parameters: -i1, -i2, -i3, and -i4) to generate
activity on the system. This enables the kernel to be in a non-preemptive kernel call that must be
finished before handling the IST. It can be useful to enable idle threads in background tasks.

Operating System Benchmark (OSBench)
The OSBench tool can help you measure system performance by identifying the time
that the kernel spends managing kernel objects. Based on the scheduler, OSBench
collects timing measurements by means of scheduler performance-timing tests. A
scheduler performance-timing test measures how much time basic kernel operations,
such as thread synchronization, require.

OSBench enables you to track timing information for the following kernel operations:

■ Acquiring or releasing a critical section.

■ Waiting for or signaling an event.

■ Creating a semaphore or mutex.

■ Yielding a thread.

■ Calling system APIs.

NOTE OSBench test

To identify performance issues in different system configurations, use OSBench in conjunction
with a stress test suite, such as the Microsoft Windows CE Test Kit (CETK).

The OSBench tool supports several command-line parameters that you can use
according to the following syntax to collect timing samples for kernel operations:

osbench [-all] [-t test_case] [-list] [-v] [-n number] [-m address] [-o file_name] [-h]

Table 3–2 describes the individual OSBench command-line parameters in more
detail.

Check out the OSBench source code to identify the test content. You can find the
source code at the following locations:

■ %_WINCEROOT%\Public\Common\Oak\Utils\Osbench

■ %_WINCEROOT%\Public\Common\Oak\Utils\Ob_load

Test results are by default sent to the debug output, but can be redirected to a CSV file.

88 Chapter 3 Performing System Programming

NOTE OSBench requirements

The OSBench tool uses system timers. The OAL must therefore support the
QueryPerformanceCounter and QueryPerformanceFrequency functions initialized in
the OEMInit function.

Remote Performance Monitor

The Remote Performance Monitor application can track the real-time performance of
the operating system as well as memory usage, network latencies, and other elements.
Each system element is associated with a set of indicators that provide information on
usage, queue length, and delays. Remote Performance Monitor can analyze log files
generated on a target device.

Table 3-2 OSBench parameters

Command-Line
Parameter

Description

-all Run all tests (default: run only those specified by -t option):
TestId 0: CriticalSections.
TestId 1: Event set-wakeup.

TestId 2: Semaphore release-acquire.
TestId 3: Mutex.
TestId 4: Voluntary yield.

TestId 5: PSL API call overhead.
TestId 6: Interlocked API's (decrement, increment,
testexchange, exchange).

-t test_case ID of test to run (need separate -t for each test).

-list List test ID's with descriptions.

-v Verbose: show extra measurement details.

-n number Number of samples per test (default =100).

-m address Virtual address to write marker values to (default = <none>).

-o file_name Output to comma-separated values (CSV) file
(default: output only to debug).

Lesson 1: Monitoring and Optimizing System Performance 89

As the name suggests, the Remote Performance Monitor application is a remote tool.
The application monitors devices both under development and out in the field, as
long as you have a way to connect to the device and deploy the application.

The Remote Performance Monitor monitors the following objects:

■ Remote Access Server (RAS).

■ Internet Control Message Protocol (ICMP).

■ Transport Control Protocol (TCP).

■ Internet Protocol (IP).

■ User Datagram Protocol (UDP).

■ Memory.

■ Battery.

■ System.

■ Process.

■ Thread.

This list is extended by implementing your own Remote Performance Monitor
extension DLL. For sample code, look in the % COMMONPROGRAMFILES%
\Microsoft Shared\Windows CE Tools\Platman\Sdk\WCE600\Samples\CEPerf
folder.

Figure 3-1 A performance chart in Remote Performance Monitor

90 Chapter 3 Performing System Programming

Similar to the Performance tool on a Windows workstation, Remote Performance
Monitor can create performance charts, configure alerts triggered at specified
thresholds, write raw log files, and compile performance reports based on the
performance objects available on the target device. Figure 3–1 shows a performance
chart example.

Hardware Validation
ILTiming tool, OSBench, and Remote Performance Monitor cover most performance
monitoring needs. However, some cases may require other methods of gathering
system performance information. For example, if you want to obtain exact interrupt
latency timings, or if your hardware platform does not provide the required timer
support for the ILTiming tool, you must use hardware–based performance measuring
methods based on the General Purpose Input/Output (GPIO) interface of the
processor and a waveform generator.

By using a waveform generator on a GPIO, it is possible to generate interrupts that are
handled through ISRs and ISTs. These ISRs and ISTs then use another GPIO to
generate a waveform in response to the received interrupt. The time elapsed between
the two waveforms—the input waveform from the generator and the output waveform
from the ISR or IST—is the latency time of the interrupt.

Lesson Summary
Windows Embedded CE provides many tools that can be employed in a development
environment to measure the system performance and validate real-time device
performance. The ILTiming tool is useful for measuring interrupt latencies. The
OSBench tool enables you to analyze how the kernel manages system objects. Remote
Performance Monitor provides the means to gather performance and statistical data
in charts, logs, as well as report on devices under development and out in the field.
Remote Performance Monitor has the ability to generate alerts based on configurable
performance thresholds. Beyond the capabilities of these tools, you have the option to
use hardware monitoring for latency and performance-measurement purposes.

Lesson 2: Implementing System Applications 91

Lesson 2: Implementing System Applications
As discussed in Chapter 1 “Customizing the Operating System Design”, Windows
Embedded CE acts as a componentized operating system and a development
platform for a wide variety of small-footprint devices. These range from devices with
restricted access for dedicated tasks, such as mission-critical industrial controllers, to
open platforms offering access to the complete operating system, including all
settings and applications, such as personal digital assistant (PDA). However,
practically all Windows Embedded CE devices require system applications to provide
an interface to the user.

After this lesson, you will be able to:

■ Launch an application at startup.

■ Replace the default shell.

■ Customize the shell.

Estimated lesson time: 25 minutes.

System Application Overview
Developers distinguish between system applications and user applications to
emphasize that these applications have different purposes. In the context of Windows
Embedded CE devices, the term system application generally refers to an application
that provides an interface between the user and the system. In contrast, a user
application is a program that provides an interface between the user and application-
specific logic and data. Like user applications, system applications can implement a
graphical or command-line interface, but system applications are typically started
automatically as part of the operating system.

Start an Application at Startup
You can configure applications to start automatically as part of the Windows
Embedded CE initialization process. This feature can be set in several ways,
depending on whether you want to run the applications before or after Windows
Embedded CE loads the shell user interface (UI). One method is to manipulate
several registry settings that control the application startup behavior. Another
common method is to place a shortcut to the application in the Startup folder so that
the standard shell can start the application.

92 Chapter 3 Performing System Programming

HKEY_LOCAL_MACHINE\INIT Registry Key
The Windows Embedded CE registry includes several registry entries to start
operating system components and applications at startup time, such as Device
Manager and Graphical Windows Event System (GWES). These registry entries are
located under the HKEY_LOCAL_MACHINE\INIT registry key, as illustrated in
Figure 3–2. You can create additional entries at this location to run your own
applications included in the run-time image without having to load and run these
applications manually on your target device. Among other things, automatically
starting an application can facilitate debugging activities during software
development.

Figure 3-2 The HKEY_LOCAL_MACHINE\INIT registry key

Table 3–3 lists three examples of registry entries to start typical Windows Embedded
CE components when the run-time image starts.

Table 3-3 Startup registry parameter examples

Location HKEY_LOCAL_MACHINE\INIT

Component Device Manager GWES Explorer

Binary Launch20=
"Device.dll"

Launch30=
"Gwes.dll"

Launch50=
"Explorer.exe"

Dependencies Depend20=
hex:0a,00

Depend30=
hex:14,00

Depend50=
hex:14,00, 1e,00

Lesson 2: Implementing System Applications 93

If you look at the Launch50 registry entry in Table 3–3, you can see that the Windows
Embedded CE standard shell (Explorer.exe), will not run until process 0x14 (20) and
process 0x1E (30) have started successfully, which happen to be Device Manager and
GWES. The hexadecimal values in the DependXX entry refer to decimal launch
numbers XX, specified in the name of the LaunchXX entries.

Implementing the SignalStarted API helps the kernel manage process dependencies
between all applications registered under the HKEY_LOCAL_MACHINE\INIT
registry key. The application can then use the SignalStarted function to inform the
kernel that the application has started and initialization is complete, as illustrated in
the following code snippet.

int WINAPI WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPTSTR lpCmdLine,

 int nCmdShow)

 {

 // Perform initialization here...

 // Initialization complete,

 // call SignalStarted...

 SignalStarted(_wtol(lpCmdLine));

 // Perform application work and eventually exit.

 return 0;

 }

Dependency handling is straightforward. The kernel determines the launch number
from the Launch registry entry, uses it as a sequence identifier, and passes it as a
startup parameter in lpCmdLine to the WinMain entry point. The application
performs any required initialization work and then informs the kernel that it has
finished this part by calling the SignalStarted function. The call to the _wtol function
in the SignalStarted code line performs a conversion of the launch number from a
string to a long integer value because the SignalStarted function expects a DWORD
parameter. For example, Device Manager must pass a SignalStarted value of 20 and
GWES must pass a value of 30 back to the kernel for the kernel to start Explorer.exe.

Description The LaunchXX registry entry specifies the binary file of the
application and the DependXX registry entry defines the
dependencies between applications.

Table 3-3 Startup registry parameter examples (Continued)

Location HKEY_LOCAL_MACHINE\INIT

94 Chapter 3 Performing System Programming

The Startup Folder
If you are using the standard shell on your target device, you can drop the application
or a shortcut to the application into the Windows\Startup folder of the device.
Explorer.exe examines this folder and starts all found applications.

NOTE StartupProcessFolder function

Only use the Windows\Startup folder if your target device runs the Windows Embedded CE
standard shell. If you are not using the standard shell, then create a custom launch application
fo r the same pu rpose and i n i t i a te i t a t s ta r t t ime ba sed on en t r i e s under t he
HKEY_LOCAL_MACHINE\INIT registry key. For sample code that demonstrates how to examine
the Startup folder and launch the applications, find the Explorer.cpp file in the %_WINCEROOT%
\Public\Shell\OAK\HPC\Explorer\Main folder. Look for a function called StartupProcessFolder
and use it as a starting point for your own implementation.

The Windows Embedded CE standard shell can handle executable and shortcut files.
Windows Embedded CE shortcut files differ from the shortcut files of Windows XP,
but provide similar functionality. CE shortcut files are text files with an .lnk file-name
extension. They contain the command-line parameters for the linked target according
to the following syntax:

nn# command [optional parameters]

The placeholder nn stands for the number of characters followed by a pound sign (#),
and the actual command, such as 27#\Windows\iexplore.exe -home to start
Internet Explorer® and open the home page. After creating and adding the desired
.lnk file to the run-time image, edit the Platform.dat or Project.dat file to map the .lnk
file to the Startup folder, similar to the following .dat file entry:

Directory("\Windows\Startup"):-File("Home Page.lnk", "\Windows\homepage.lnk")

Chapter 2 covers these configuration tasks in more detail.

NOTE Startup folder restriction

The key advantage of the Startup folder is that the applications placed in this folder do not need
to implement the SignalStarted API to inform the kernel that the initialization and start process
completed successfully. However, this also implies that the operating system cannot manage
dependencies between applications or enforce a specific startup sequence. The operating sys-
tem starts all applications in the Startup folder concurrently.

Lesson 2: Implementing System Applications 95

Delayed Startup
Another interesting option to start applications automatically is to leverage the
services host process (Services.exe). Although Windows Embedded CE does not
include a full-featured Service Control Manager (SCM), it does include built-in
services and also comes with a sample service called Svcstart that can be used to start
applications.

Svcstart is particularly useful for applications with dependencies on system
components and services that are not immediately available after the startup process
finishes. For example, it might take a few seconds to obtain an Internet Protocol (IP)
address from a Dynamic Host Configuration Protocol (DHCP) server for a network
interface card (NIC) or initialize a file system. To accommodate these scenarios, the
Svcstart service supports a Delay parameter that specifies the time to wait before
star t ing an appl icat ion. You can f ind the Svcst ar t sample code in the
%_WINCEROOT%\Public\Servers\SDK\Samples\Services\Svcstart folder.
Compile the sample code into Svcstart.dll, add this DLL to your run-time image, and
then run the sysgen -p servers svcstart command to register the Svcstart service with
the operating system. Load it by using Services.exe.

Table 3–4 lists the registry settings that the Svcstart service supports to start
applications.

Table 3-4 Svcstart registry parameters

Location HKEY_LOCAL_MACHINE\Software\Microsoft\Svcstart\1

Application Path @="iexplore.exe"

Command-line
Parameters

Args="-home"

Delay Time Delay=dword:4000

Description Starts the application with the specified command-line
parameters after a delay time defined in milliseconds. See the
Svcstart.cpp file for more details.

96 Chapter 3 Performing System Programming

Windows Embedded CE Shell
By default, Platform Builder provides three shells to implement the interface between
the target device and the user: the command processor shell, the standard shell, and
a thin client shell. Each shell supports different features to interact with the target
device.

Command Processor Shell
The command processor shell provides console input and output with a limited set of
commands. This shell is available for both display-enabled devices and headless
devices without keyboard and display screen. For display-enabled devices, include
the Console Window component (Cmd.exe) so that the command processor shell
can handle input and output through a command-prompt window. Headless devices,
on the other hand, typically use a serial port for input and output.

Table 3–5 lists registry settings that you must configure on the target device to use a
serial port in conjunction with the command processor shell.

Table 3-5 Console registry parameters

Location HKEY_LOCAL_MACHINE\Drivers\Console

Registry Entry OutputTo COMSpeed

Type REG_DWORD REG_DWORD

Default Value None 19600

Description Defines which serial port the command
processor shell uses for input and
output.

■ Setting this value to -1 will redirect
input and output to a debug port.

■ Setting this value to zero specifies
no redirection.

■ Setting this value to a number
greater than zero and less than 10
will redirect input and output to a
serial port.

Specifies the data
transfer rate of the
serial port in bits per
second (bps).

Lesson 2: Implementing System Applications 97

Windows Embedded CE Standard Shell
The standard shell provides a graphical user interface (GUI) similar to the Windows
XP desktop. The primary purpose of the standard shell is to start and run user
applications on the target device. This shell includes a desktop with Start menu and
taskbar that enables the user to switch between applications, from one window to
another. The standard shell also includes a system notification area to display
additional information, such as the status of network interfaces and the current
system time.

Windows Embedded CE Standard Shell is a required catalog item if you select the
Enterprise Terminal design template when creating an OS design project in Visual
Studio by using the OS Design Wizard. If you want to clone and customize this shell,
you can find the source code in the %_WINCEROOT\Public\Shell\OAK\HPC
folder. Chapter 1 explains how to clone catalog items and add them to an OS design.

Thin Client Shell
The thin client shell, also called the Windows–based Terminal (WBT) shell in the
product documentation, is a GUI shell for thin-client devices that do not run user
applications locally. You can add Internet Explorer to a thin-client OS design, yet all
other user applications must run on a Terminal server in the network. The thin client
shell uses the Remote Desktop Protocol (RDP) to connect to the server and display
the remote Windows desktop. By default, the thin client shell displays the remote
desktop in full-screen mode.

Taskman
You can also implement your own shell by cloning and customizing the Windows
Task Manager (TaskMan) shell application. The source code in the %_WINCEROOT%
\Public\Wceshellfe\Oak\Taskman folder is a good starting point.

Windows Embedded CE Control Panel
The Control Panel is a special repository for central access to system and application
configuration tools. The product documentation refers to these configuration tools as
applets, to indicate the fact that they are embedded in the Control Panel. Each applet
serves a specific and targeted purpose and does not depend on other applets. You can
customize the content of the Control Panel by adding your own applets or by
removing existing Control Panel applets included with Windows Embedded CE.

98 Chapter 3 Performing System Programming

Control Panel Components
The Control Panel is a configuration system that relies on the following three key
components:

■ Front-End (Control.exe) This application displays the user interface and
facilitates starting Control Panel applets.

■ Host Application (Ctlpnl.exe) This application loads and runs the Control
Panel applets.

■ Applets These are the individual configuration tools, implemented in form of
.cpl files listed with icon and name in the Control Panel user interface.

For details regarding the implementation of the Windows Embedded CE Control
Panel, check out the source code in the %_WINCEROOT%\Public\Wceshellfe\Oak
\Ctlpnl folder. You can clone the Control Panel code and customize it to implement
your own Control Panel version

Implementing Control Panel Applets
As mentioned, a Control Panel applet is a configuration tool for a system component
or user application implemented in form of a .cpl file and located in the Windows
folder on the target device. Essentially, a .cpl file is a DLL that implements the
CPlApplet API. A single .cpl file can contain multiple Control Panel applications, yet a
single applet cannot span multiple .cpl files. Because all .cpl files implement the
CPlApplet API, it is a straightforward process for Control.exe to obtain detailed info
about the implemented applets at startup in order to display the set of available
applets in the user interface. Control.exe only needs to enumerate all .cpl files in the
Windows folder and to call the CPlApplet function in each file.

According to the DLL nature and CPlApplet API requirements, .cpl files must
implement the following two public entry points:

■ BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call,
LPVOID lpReserved) Used to initialize the DLL. The system calls DllMain to
load the DLL. The DLL returns true if initialization succeeded or false if
initialization failed.

■ LONG CALLBACK CPlApplet(HWND hwndCPL, UINT message, LPARAM
lParam1, LPARAM lParam2) A callback function that serves as the entry point
for the Control Panel to perform actions on the applet.

Lesson 2: Implementing System Applications 99

NOTE DLL entry points

You must export the DllMain and CPlApplet entry points so that the Control Panel application
can access these functions. Non-exported functions are private to the DLL. Make sure the func-
tion definitions are in export "C" { } blocks to export the C interface.

The Control Panel calls the CPlApplet function to initialize the applet, obtain
information, provide information about user actions, and to unload the applet. The
applet must support several Control Panel messages, listed in Table 3–6, to
implement a fully functional CPlApplet interface:

Table 3-6 Control Panel messages

Control Panel
Message

Description

CPL_INIT The Control Panel sends this message to perform global
initialization of the applet. Memory initialization is a
typical task performed at this step.

CPL_GETCOUNT The Control Panel sends this message to determine the
number of Control Panel applications implemented in the
.cpl file.

CPL_NEWINQUIRE The Control Panel sends this message for all the Control
Panel applications specified by CPL_GETCOUNT. At this
step each Control Panel application must return a
NEWCPLINFO structure to specify the icon and title to
display in the Control Panel user interface.

CPL_DBLCLK The Control Panel sends this message when the user
double-clicks on an icon of the applet in the Control Panel
user interface.

CPL_STOP The Control Panel sends this message once for each
instance specified by CPL_GETCOUNT.

CPL_EXIT The Control Panel sends this message once for the applet
before the system releases the DLL.

100 Chapter 3 Performing System Programming

NOTE NEWCPLINFO information

Store the NEWCPLINFO information for each Control Panel application that you implement in a
Control Panel applet in a resource embedded in the .cpl file. This facilitates the localization of
icons, names, and applet descriptions returned in response to CPL_NEWINQUIRE messages.

Building Control Panel Applets
To build a Control Panel applet and generate the corresponding .cpl file, find the
source code folder of the applet subproject and add the following CPL build directive
on a new line at the end of the Sources file:

CPL=1

You also must add the path to the Control Panel header file to the Include Directories
entry on the C/C++ tab in the applet subproject settings in Visual Studio, as illustrated
in Figure 3–3:

$(_PROJECTROOT)\CESysgen\Oak\Inc

Figure 3-3 Include Directories entry for a Control Panel applet

Lesson 2: Implementing System Applications 101

Enabling Kiosk Mode
Many Windows Embedded CE devices, such as medical monitoring devices,
automated teller machines (ATM), or industrial control systems are dedicated to a
single task. The standard graphical shell is not useful for these devices. Removing the
standard shell restricts access to the Control Panel configuration settings and also
protects users from starting additional applications. The result is a device in kiosk
mode that opens an application according to the special purpose of the target device
directly with no shell access.

Kiosk applications for Windows Embedded CE are developed in native code or
managed code. The only requirement is to start this application in place of the
standard shell (Explorer.exe). The system then starts a black shell, meaning no shell
application is running on the device. You only need to configure the registry entries
under the HKEY_LOCAL_MACHINE\Init key to implement this configuration. As
mentioned earlier in this chapter, the LaunchXX entry for Explorer.exe is Launch50.
Replace Explorer.exe with your custom kiosk application and consider the job
completed, as shown in Table 3–7. Keep in mind that your custom kiosk application
must implement the SignalStarted API for the kernel to manage the application
dependencies correctly.

NOTE Kiosk Mode for managed applications

To run a managed application in place of the standard shell, include the binary file in the run-
time image and edit the .bib file that belongs to the managed application. Specifically, you must
define binary files in a FILES section for the system to load the application inside the Common
Language Runtime (CLR).

Table 3-7 Startup registry parameter examples

Location HKEY_LOCAL_MACHINE\INIT

Component Custom Kiosk Application

Binary Launch50="myKioskApp.exe"

Dependencies Depend50=hex:14,00, 1e,00

Description To enable kiosk mode replace the Launch50 entry for
Explorer.exe in the device registry with an entry that points to
a custom kiosk application.

102 Chapter 3 Performing System Programming

Lesson Summary
Windows Embedded CE is a componentized operating system with a broad palette of
items and customizable features. One such feature enables you to configure automatic
launching of applications at start time, which is particularly useful for installation and
configuration tools. You can also customize the Control Panel by adding your own
applets, implemented in custom .cpl files, which are DLLs that adhere to the
CPlApplet API so that the Control Panel can call into the applets. For special-purpose
devices, such as ATMs, ticket machines, medical monitoring devices, airport check-in
terminals, or industrial control systems, you can further customize the user
environment by replacing the standard shell with your kiosk application. You do not
need to customize the code base or start process of the Windows Embedded CE
operating system. Enabling kiosk mode is merely a task of replacing the default
Launch50 registry entry with a custom Launch50 entry that points to your standard
or managed code application.

Lesson 3: Implementing Threads and Thread Synchronization 103

Lesson 3: Implementing Threads and
Thread Synchronization

Windows Embedded CE is a multithreaded operating system. The processing model
differs from UNIX–based embedded operating systems because processes can
include multiple threads. You need to know how to manage, schedule, and
synchronize these threads within a single process and between processes in order to
implement and debug multithreaded applications and drivers and to achieve optimal
system performance on your target devices.

After this lesson, you will be able to:

■ Create and stop a thread.

■ Manage thread priorities.

■ Synchronize multiple threads.

■ Debug thread synchronization issues.

Estimated lesson time: 45 minutes.

Processes and Threads
A process is a single instance of an application. It has a processing context, which can
include a virtual address space, executable code, open handles to system objects, a
security context, a unique process identifier, and environment variables. It also has a
primary thread of execution. A thread is the basic unit of execution managed by the
scheduler. In a Windows process, a thread can create additional threads. There is no
hard-coded maximum number of threads per process. The maximum number
depends on available memory resources because every thread uses memory and the
physical memory is limited on the platform. The maximum number of processes on
Windows Embedded CE is limited to 32,000.

Thread Scheduling on Windows Embedded CE
Windows Embedded CE supports preemptive multitasking to run multiple threads
from various processes simultaneously. Windows Embedded CE performs thread
scheduling based on priority. Each thread on the system has a priority ranging from
zero to 255. Priority zero is the highest priority. The scheduler maintains a priority list
and selects the thread to run next according to the thread priority in a round-robin
fashion. Threads of the same priority run sequentially in a random order. It is

104 Chapter 3 Performing System Programming

important to note that thread scheduling relies on a time-slice algorithm. Each thread
can only run for a limited amount of time. The maximum possible time slice that a
thread can run is called the quantum. Once the quantum has elapsed, the scheduler
suspends the thread and resumes the next thread in the list.

Applications can set the quantum on a thread-by-thread basis to adapt thread
scheduling according to application needs. However, changing the quantum for a
thread does not affect threads with a higher priority because the schedule selects
threads with higher priority to run first. The scheduler even suspends lower-priority
threads within their time slice if a higher-priority thread becomes available to run.

Process Management API
Windows Embedded CE includes several process management functions as part of
the core Win32 API. Three important functions are listed in Table 3–8 that are useful
for creating and ending processes.

MORE INFO Process management API

For more information about process management functions and complete API documentation,
see the Core OS Reference for Windows Mobile® 6 and Windows Embedded CE 6.0, available
on the Microsoft MSDN website at http://msdn2.microsoft.com/en-us/library/aa910709.aspx.

Thread Management API
Each process has at least one thread called the primary thread. This is the main thread
of the process, which means that exiting or terminating this thread also ends the
process. The primary thread can also create additional threads, such as worker
threads, to perform parallel calculations or accomplish other processing tasks. These
additional threads can create more threads if necessary by using the core Win32 API.
Table 3–9 lists the most important functions to use in applications that work with
threads on Windows Embedded CE.

Table 3-8 Process management functions

Function Description

CreateProcess Starts a new process.

ExitProcess Ends a process with cleanup and unloading DLLs.

TerminateProcess Terminates a process without cleanup or unloading DLLs.

Lesson 3: Implementing Threads and Thread Synchronization 105

MORE INFO Thread management API

For more information about thread management functions and complete API documentation,
see the Core OS Reference for Windows Mobile 6 and Windows Embedded CE 6.0, available on
the Microsoft MSDN website at http://msdn2.microsoft.com/en-us/library/aa910709.aspx.

Creating, Exiting, and Terminating Threads
The CreateThread function used to create a new thread expects several parameters
that control how the system creates the thread and the instructions that the thread
runs. Although it is possible to set most of these parameters to null or zero, it is
necessary to provide at least a pointer to an application–defined function that the
thread is supposed to execute. This function typically defines the core processing
instructions for the thread, although you can also call other functions from within
this function. It is important to pass the core function as a static reference to
CreateThread because the linker must be able to determine the core function’s
starting address at compile time. Passing a non-static function pointer does not work.

Table 3-9 Thread management functions

Function Description

CreateThread Creates a new thread.

ExitThread Ends a thread.

TerminateThread Stops a specified thread without running cleanup or
other code. Use this function only in extreme cases
because terminating a thread can leave memory
objects behind and cause memory leaks.

GetExitCodeThread Returns the thread exit code.

CeSetThreadPriority Sets the thread priority.

CeGetThreadPriority Gets the current thread priority.

SuspendThread Suspends a thread.

ResumeThread Resumes a suspended thread.

Sleep Suspends a thread for a specified amount of time.

SleepTillTick Suspends a thread until the next system tick.

106 Chapter 3 Performing System Programming

The following code listing is copied from the Explorer.cpp file that you can find in the
%_WINCEROOT%\Public\Shell\OAK\HPC\Explorer\Main folder. It illustrates
how to create a thread.

void DoStartupTasks()

{

 HANDLE hThread = NULL;

 // Spin off the thread which registers and watches the font dirs

 hThread = CreateThread(NULL, NULL, FontThread, NULL, 0, NULL);

 if hThread)

 {

 CloseHandle(hThread);

 }

 // Launch all applications in the startup folder

 ProcessStartupFolder();

}

This code specifies FontThread as the new thread’s core function. It immediately
closes the returned thread handle because the current thread does not need it. The
new thread runs parallel to the current thread and implicitly exits upon returning
from the core function. This is the preferred way to exit threads because it enables C++
function cleanup to occur. It is not necessary to explicitly call ExitThread.

However, it is possible to explicitly call the ExitThread function within a thread routine
to end processing without reaching the end of the core function. ExitThread invokes
the entry point of all attached DLLs with a value indicating that the current thread is
detaching, and then deallocates the current thread's stack to terminate the current
thread. The application process exits if the current thread happens to be the primary
thread. Because ExitThread acts on the current thread, it is not necessary to specify a
thread handle. However, you must pass a numeric exit code, which other threads can
retrieve by using the GetExitCodeThread function. This process is useful to identify
errors and reasons for the thread exiting. If ExitThread is not explicitly called, the exit
code corresponds to the return value of the thread function. If GetExitCodeThread
returns the value STILL_ACTIVE, the thread is still active and running.

Although you should avoid it, there can be rare situations that leave you no other way
to terminate a thread except for calling the TerminateThread function. A
malfunctioning thread destroying file records might require this function. Formatting
a file system might need you to call TerminateThread in debugging sessions while
your code is still under development. You need to pass the handle to the thread to be
terminated and an exit code, which you can retrieve later by using the

Lesson 3: Implementing Threads and Thread Synchronization 107

GetExitCodeThread function. Calling the TerminateThread function should never be
part of normal processing. It leaves the thread stack and attached DLLs behind,
abandons critical sections and mutexes owned by the terminated thread, and leads to
memory leaks and instability. Do not use TerminateThread as part of the process
shutdown procedure. Threads within the process can exit implicitly or explicitly by
using the ExitThread function.

Managing Thread Priority

Each thread has a priority value ranging from zero to 255, which determines how the
system schedules the thread to run in relationship to all other threads within the
process and between processes. On Windows Embedded CE, the core Win32 API
includes four thread management functions that set the priority of a thread as follows.

■ Base priority levels Use the SetThreadPriority and SetThreadPriority functions
to manage the thread priority at levels compatible with early versions of
Windows Embedded CE (zero through seven).

■ All priority levels Use the CeSetThreadPriority and CeGetThreadPriority
functions to manage the thread priority at all levels (zero through 255).

NOTE Base priority levels

The base priority levels zero through seven of earlier versions of Windows Embedded CE are now
mapped to the eight lowest priority levels 248 through 255 of the CeSetThreadPriority function.

It is important to keep in mind that thread priorities define a relationship between
threads. Assigning a high thread priority can be detrimental to the system if other
important threads run with lower priority. You might achieve better application
behavior by using a lower priority value. Performance testing with different priority
values is a reliable manner of identifying the best priority level for a thread in an
application or driver. However, testing 256 different priority values is not efficient.
Choose an appropriate priority range for your threads according to the purpose of
your driver or application as listed in Table 3–10.

Table 3-10 Thread priority ranges

Range Description

zero through 96 Reserved for real-time drivers.

97 through 152 Used by default device drivers.

108 Chapter 3 Performing System Programming

Suspending and Resuming Threads
It can help system performance to delay certain conditional tasks that depend on
time-consuming initialization routines or other factors. After all, it is not efficient to
enter a loop and check 10,000 times if a required component is finally ready for use.
A better approach is to put the worker thread to sleep for an appropriate amount of
time, such as 10 milliseconds, check the state of the dependencies after that time, and
go back to sleep for another 10 milliseconds or continue processing when conditions
permit. Use the Sleep function from within the thread itself to suspend and resume a
thread. You can also use the SuspendThread and ResumeThread functions to control
a thread through another thread.

The Sleep function accepts a numeric value that specifies the sleep interval in
milliseconds. It is important to remember that the actual sleep interval will likely
exceed this value. The Sleep function relinquishes the remainder of the current
thread’s quantum and the scheduler will not give this thread another time slice until
the specified interval has passed and there are no other threads with higher priority.
For example, the function call Sleep(0) does not imply a sleep interval of zero
milliseconds. Instead, Sleep(0) relinquishes the remainder of the current quantum to
other threads. The current thread will only continue to run if the scheduler has no
other threads with the same or higher priority on the thread list.

Similar to the Sleep(0) call, the SleepTillTick function relinquishes the remainder of
the current thread’s quantum and suspends the thread until the next system tick.
This is useful if you want to synchronize a task on a system tick basis.

The WaitForSingleObject or WaitForMultipleObjects functions suspend a thread
until another thread or a synchronization object is signaled. For example, a thread can
wait for another thread to exit without having to enter a loop with repeated Sleep and
GetExitCodeThread calls if the WaitForSingleObject function is enabled instead. This
approach results in a better use of resources and improves code readability. It is
possible to pass a timeout value in milliseconds to the WaitForSingleObject or
WaitForMultipleObjects functions.

153 through 247 Reserved for real-time below drivers.

248 through 255 Maps to non-real-time priorities for applications.

Table 3-10 Thread priority ranges

Range Description

Lesson 3: Implementing Threads and Thread Synchronization 109

Thread Management Sample Code
The following code snippet illustrates how to create a thread in suspended mode,
specify a thread function and parameters, change the thread priority, resume the
thread, and wait for the thread to finish its processing and exit. In the last step, the
following code snippet demonstrates how to check the error code returned from the
thread function.

// Structure used to pass parameters to the thread.

typedef struct

{

 BOOL bStop;

} THREAD_PARAM_T

// Thread function

DWORD WINAPI ThreadProc(LPVOID lpParameter)

{

 // Perform thread actions...

 // Exit the thread.

 return ERROR_SUCCESS;

}

BOOL bRet = FALSE;

THREAD_PARAM_T threadParams;

threadParams.bStop = FALSE;

DWORD dwExitCodeValue = 0;

// Create the thread in suspended mode.

HANDLE hThread = CreateThread(NULL, 0, ThreadProc,

 (LPVOID) &threadParams,

 CREATE_SUSPENDED, NULL);

if (hThread == NULL)

{

 // Manage the error...

}

else

{

 // Change the Thread priority.

 CeSetThreadPriority(hThread, 200);

 // Resume the thread, the new thread will run now.

 ResumeThread(hThread);

 // Perform parallel actions with the current thread...

 // Wait until the new thread exits.

 WaitForSingleObject(hThread, INFINITE);

 // Get the thread exit code

 // to identify the reason for the thread exiting

110 Chapter 3 Performing System Programming

 // and potentially detect errors

 // if the return value is an error code value.

 bRet = GetExitCodeThread(hThread, &dwExitCodeValue);

 if (bRet && (ERROR_SUCCESS == dwExitCodeValue))

 {

 // Thread exited without errors.

 }

 else

 {

 // Thread exited with an error.

 }

 // Don’t forget to close the thread handle

 CloseHandle(hThread);

}

Thread Synchronization
The real art of multithreaded programming lies in avoiding deadlocks, protecting
access to resources, and ensuring thread synchronization. Windows Embedded CE
provides several kernel objects to synchronize resource access for threads in drivers
or applications, such as critical sections, mutexes, semaphores, events, and interlocks
functions. Yet, the choice of the object depends on the task that you want to
accomplish.

Critical Sections
Critical sections are objects that synchronize threads and guard access to resources
within a single process. A critical section cannot be shared between processes. To
access a resource protected by a critical section, a thread calls the EnterCriticalSection
function. This function blocks the thread until the critical section is available.

In some situations, blocking the thread execution might not be efficient. For example,
if you want to use an optional resource that might never be available, calling the
EnterCriticalSection function blocks your thread and consumes kernel resources
without performing any processing on the optional resource. It is more efficient in
t h i s c a s e to u s e a c r i t i c a l s e c t i o n w i t h ou t b l oc k i n g by c a l l i n g t he
TryEnterCriticalSection function. This function attempts to grab the critical section
and returns immediately if the critical section cannot be used. The thread can then
continue along an alternative code path, such as to prompt the user for input or to
plug in a missing device.

Lesson 3: Implementing Threads and Thread Synchronization 111

Having obtained the critical section object through EnterCriticalSection or
TryEnterCriticalSection, the thread enjoys exclusive access to the resource. No other
thread can access this resource until the current thread calls the LeaveCriticalSection
function to release the critical section object. Among other things, this mechanism
highlights why you should not use the TerminateThread function to terminate
threads. TerminateThread does not perform cleanup. If the terminated thread owned
a critical section, the protected resource becomes unusable until the user restarts the
application.

Table 3–11 lists the most important functions that you can use to work with critical
section objects for thread synchronization purposes.

Mutexes
Whereas critical sections are limited to a single process, mutexes can coordinate
mutually exclusive access to resources shared between multiple processes. A mutex is
a kernel object that facilitates inter-process synchronization. Call the CreateMutex
function to create a mutex. The creating thread can specify a name for the mutex
object at creation time, although it is possible to create an unnamed mutex. Threads
in other processes can also call CreateMutex and specify the same name. However,
these subsequent calls do not create new kernel objects, but instead return a handle
to the existing mutex. At this point, the threads in the separate processes can use the
mutex object to synchronize access to the protected shared resource.

The state of a mutex object is signaled when no thread owns it and non-signaled when
one thread has ownership. A thread must use one of the wait functions,
WaitForSingleObject or WaitForMultipleObjects, to request ownership. You can specify
a timeout value to resume thread processing along an alternative code path if the mutex

Table 3-11 Critical Section API

Function Description

InitializeCriticalSection Create and initialize a critical section object.

DeleteCriticalSection Destroy a critical section object.

EnterCriticalSection Grab a critical section object.

TryEnterCriticalSection Try to grab a critical section object.

LeaveCriticalSection Release a critical section object.

112 Chapter 3 Performing System Programming

does not become available during the wait interval. On the other hand, if the mutex
becomes available and ownership is granted to the current thread, do not forget to call
ReleaseMutex for each time that the mutex satisfied a wait in order to release the mutex
object for other threads. This is important because a thread can call a wait function
multiple times, such as in a loop, without blocking its own execution. The system does
not block the owning thread to avoid a deadlock situation, but the thread must still call
ReleaseMutex as many times as the wait function to release the mutex.

Table 3–12 lists the most important functions that you can use to work with mutex
objects for thread synchronization purposes.

Semaphores
Apart from kernel objects that enable you to provide mutually exclusive access to
resources within a process and between processes, Windows Embedded CE also
provides semaphore objects that enable concurrent access to a resource by one or
multiple threads. These semaphore objects maintain a counter between zero and a
maximum value to control the number of threads accessing the resource. The
maximum value amount is specified in the CreateSemaphore function call.

The semaphore counter limits the number of threads that can access the
synchronization object concurrently. The system will keep decrementing the counter

Table 3-12 Mutex API

Function Description

CreateMutex Create and initialize a named or unnamed mutex
object. To protect resources shared between processes,
you must use named mutex objects.

CloseHandle Closes a mutex handle and deletes the reference to the
mutex object. All references to the mutex must be
deleted individually before the kernel deletes the
mutex object.

WaitForSingleObject Waits to be granted ownership of a single mutex object.

WaitForMultipleObjects Waits to be granted ownership for a single or multiple
mutex objects.

ReleaseMutex Releases a mutex object.

Lesson 3: Implementing Threads and Thread Synchronization 113

every time a thread completes a wait for the semaphore object until the counter reaches
zero and enters the nonsignaled state. The counter cannot decrement past zero. No
further thread can gain access to the resource until an owning thread releases the
semaphore by calling the ReleaseSemaphore function, which increments the counter by
a specified value and again switches the semaphore object back into signaled state.

Similar to mutexes, multiple processes can open handles of the same semaphore
object to access resources shared between processes. The first call to the
CreateSemaphore function creates the semaphore object with a specified name. You
can also construct unnamed semaphores, but these objects are not available for
interprocess synchronization. Subsequent calls to the CreateSemaphore function
with the same semaphore name do not create new objects, but open a new handle of
the same semaphore.

Table 3–13 lists the most important functions that work with semaphore objects for
thread synchronization purposes.

Table 3-13 Semaphore API

Function Description

CreateSemaphore Creates and initializes a named or unnamed
semaphore object with a counter value. Use named
semaphore objects to protect resources shared
between processes.

CloseHandle Closes a semaphore handle and deletes the reference
to the semaphore object. All references to the
semaphore must be closed individually before the
kernel deletes the semaphore object.

WaitForSingleObject Waits to be granted ownership of a single semaphore
object.

WaitForMultipleObjects Waits to be granted ownership for a single or multiple
semaphore objects.

ReleaseSemaphore Releases a semaphore object.

114 Chapter 3 Performing System Programming

Events
The Event object is another kernel object that synchronizes threads. This object
enables applications to signal other threads when a task is finished or when data is
available to potential readers. Each event has signaled/non-signaled state information
used by the API to identify the state of the event. Two types of events, manual events
and auto-reset events, are created according to the behavior expected by the event.

The creating thread specifies a name for the event object at creation time, although it
is also possible to create an unnamed event. It is possible for threads in other
processes to call CreateMutex and specify the same name, but these subsequent calls
do not create new kernel objects.

Table 3–14 lists the most important functions for event objects for thread
synchronization purposes.

The behavior of the events API is different according to the type of events. When you
use SetEvent on a manual event object, the event will stay signaled until ResetEvent is
explicitly called. Auto-reset events only stay signaled until a single waiting thread is
released. At most, one waiting thread is released when using the PulseEvent function
on auto-reset events before it immediately transitions back to the non-signaled state.
In the case of manual threads, all waiting threads are released and immediately
transition back to a non-signaled state.

Table 3-14 Event API

Function Description

CreateEvent Creates and initializes a named or unnamed event
object.

SetEvent Signal an event (see below).

PulseEvent Pulse and signal the event (see below).

ResetEvent Reset a signaled event.

WaitForSingleObject Waits for an event to be signaled.

WaitForMultipleObjects Waits to be signaled by a single or multiple event
objects.

CloseHandle Releases an Event object.

Lesson 3: Implementing Threads and Thread Synchronization 115

Interlocked Functions
In multithread environments, threads can be interrupted at any time and resumed
later by the scheduler. Portions of code or applications resources can be protected
using semaphores, events, or critical sections. In some applications, it could be too
time consuming to use those kinds of system objects to protect only one line of code
like this:

// Increment variable

dwMyVariable = dwMyVariable + 1;

The sample source code above in C is one single instruction, but in assembly it could
be more than that. In this particular example, the thread can be suspended in the
middle of the operation and resumed later, but errors can potentially be encountered
in the case of another thread using the same variable. The operation is not atomic.
Fortunately, it is possible in Windows Embedded CE 6.0 R2 to increment, decrement,
and add values in multithreading-safe, atomic operations without using
synchronization objects. This is done by using interlocked functions.

Table 3–15 lists the most important interlocked functions that are used to atomically
manipulate variables.

Troubleshooting Thread Synchronization Issues
Multithreaded programming enables you to structure your software solutions based
on separate code execution units for user interface interaction and background tasks.
It is an advanced development technique that requires careful implementation of
thread synchronization mechanisms. Deadlocks can happen, especially when using
multiple synchronization objects in loops and subroutines. For example, thread One
owns mutex A and waits for mutex B before releasing A, while thread Two waits for
mutex A before releasing mutex B. Neither thread can continue in this situation
because each depends on a resource being released by the other. These situations are
hard to locate and troubleshoot, particularly when threads from multiple processes

Table 3-15 Interlock API

Function Description

InterlockedIncrement Increment the value of a 32 bit variable.

InterlockedDecrement Decrement the value of a 32 bit variable.

InterlockedExchangeAdd Perform atomic addition on a value.

116 Chapter 3 Performing System Programming

are accessing shared resources. The Remote Kernel Tracker tool identifies how
threads are scheduled on the system and enables you to locate deadlocks.

The Remote Kernel Tracker tool enables you to monitor all processes, threads, thread
interactions, and other system activities on a target device. This tool relies on the
CeLog event-tracking system to log kernel and other system events in a file named
Celog.clg in the %_FLATRELEASEDIR% directory. System events are classified by
zone. The CeLog event-tracking system can be configured to focus on a specific zone
for data logging.

If you have Kernel Independent Transport Layer (KITL) enabled on the target device,
the Remote Kernel Tracker visualizes the CeLog data and analyzes the interactions
between threads and processes. This is illustrated in Figure 3–4. While KITL sends
the data directly to the Remote Kernel Tracker tool, it is also possible to analyze
collected data offline.

Figure 3-4 The Remote Kernel Tracker tool

MORE INFO: CeLog event tracking and filtering

For more information about CeLog event tracking and CeLog event filtering, see the section
“CeLog Event Tracking Overview” in the Windows Embedded CE 6.0 documentation available on
the Microsoft MSDN website at http://msdn2.microsoft.com/en-us/library/aa935693.aspx.

Lesson 3: Implementing Threads and Thread Synchronization 117

Lesson Summary
Windows Embedded CE is a multithreaded operating system that provides several
process management functions to create processes and threads, assign thread
priorities ranging from zero through 255, suspend threads, and resume threads. The
Sleep function is useful in suspending a thread for a specified period of time, but the
WaitForSingleObject or WaitForMultipleObjects functions can also be used to
suspend a thread until another thread or a synchronization object is signaled.
Processes and threads are ended in two ways: with and without cleanup. As a general
rule, always use ExitProcess and ExitThread to give the system a chance to perform
cleanup. Use TerminateProcess and TerminateThread only if you have absolutely no
other choice.

When working with multiple threads, it is beneficial to implement thread
synchronization in order to coordinate access to shared resources within and between
processes. Windows Embedded CE provides several kernel objects for this purpose,
specifically critical sections, mutexes, and semaphores. Critical sections guard access
to resources within a single process. Mutexes coordinate mutually exclusive access to
resources shared among multiple processes. Semaphores implement concurrent
access by multiple threads to resources within a process and between processes.
Events are used to notify the other threads, and interlocked functions for the
manipulation of variables in a thread-safe atomic way. If you happen to encounter
thread synchronization problems during the development phase, such as deadlocks,
use the CeLog event-tracking system and Remote Kernel Tracker to analyze the
thread interactions on the target device.

EXAM TIP

To pass the certification exam, make sure you understand how to use the various synchroniza-
tion objects in Windows Embedded CE 6.0 R2.

118 Chapter 3 Performing System Programming

Lesson 4: Implementing Exception Handling
Target devices running Windows Embedded CE include exceptions as part of system
and application processing. The challenge is to respond to exceptions in the
appropriate manner. Handling exceptions correctly ensures a stable operating system
and positive user experience. For example, instead of unexpectedly terminating a
video application, you might find it more useful to prompt the user to connect a
Universal Serial Bus (USB) camera if the camera is currently disconnected. However,
you should not use exception handling as a universal solution. Unexpected
application behavior can be the result of malicious code tampering with executables,
DLLs, memory structures, and data. In this case, terminating the malfunctioning
component or application is the best course of action to protect the data and the
system.

After this lesson, you will be able to:

■ Understand the reason for exceptions.

■ Catch and throw exceptions.

Estimated lesson time: 30 minutes.

Exception Handling Overview
Exceptions are events resulting from error conditions. These conditions can arise
when the processor, operating system, and applications are executing instructions
outside the normal flow of control in kernel mode and user mode. By catching and
handling exceptions, you can increase the robustness of your applications and ensure
a positive user experience. Strictly speaking, however, you are not required to
implement exception handlers in your code because structured exception handling is
an integral part of Windows Embedded CE.

The operating system catches all exceptions and forwards them to the application
processes that caused the events. If a process does not handle its exception event, the
system forwards the exception to a postmortem debugger and eventually terminates
the process in an effort to protect the system from malfunctioning hardware or
software. Dr. Watson is a common postmortem debugger that creates a memory
dump file for Windows Embedded CE.

Lesson 4: Implementing Exception Handling 119

Exception Handling and Kernel Debugging
Exception handling is also the basis for kernel debugging. When you enable kernel
debugging in an operating system design, Platform Builder includes the kernel
debugging stub (KdStub) in the run-time image to enable components that raise
exceptions to break into the debugger. Now you can analyze the situation, step
through the code, resume processing, or terminate the application process manually.
However, you need a KITL connection to a development workstation in order to
interact with the target device. Without a KITL connection, the debugger ignores the
exception and lets the application continue to run so that the operating system can
use another exception handler as if no debugger was active. If the application does
not handle the exception, then the operating system gives the kernel debugger a
second chance to perform postmortem debugging. In this context, it is often called
just in time (JIT) debugging. The debugger must now accept the exception and waits
for a KITL connection to become available for the debug output. Windows Embedded
CE waits until you establish the KITL connection and start debugging the target
device. Developer documentation often uses the terms first-chance exception and
second-chance exception because the kernel debugger has two chances to handle an
exception in this scenario, but they are, in fact, referring to the same exception event.
For more information about debugging and system testing, read Chapter 5,
“Debugging and Testing the System.”

Hardware and Software Exceptions
Windows Embedded CE uses the same structured exception handling (SEH)
approach for all hardware and software exceptions. The central processing unit
(CPU) can raise hardware exceptions in response to invalid instruction sequences,
such as division by zero or an access violation caused by an attempt to access an
invalid memory address. Drivers, system applications, and user applications, on the
other hand, can raise software exceptions to invoke the operating system’s SEH
mechanisms by using the RaiseException function. For example, you can raise an
exception if a required device is not accessible (such as a USB camera or a database
connection), if the user specified an invalid command-line parameter, or for any other
reason that requires you to run special instructions outside the normal code path. You
can specify several parameters in the RaiseException function call to specify
information that describes the exception. This specification can then be used in the
filter expression of an exception handler.

120 Chapter 3 Performing System Programming

Exception Handler Syntax
Windows Embedded CE supports frame–based structured exception handling. It is
possible to enclose a sensitive sequence of code in braces ({}) and mark it with the
__try keyword to indicate that any exceptions during the execution of this code
should invoke an exception handler that follows in a section marked by using the
__except keyword. The C/C++ compiler included in Microsoft Visual Studio supports
these keywords and compiles the code blocks with additional instructions that
enable the system either to restore the machine state and continue thread execution
at the point at which the exception occurred, or to transfer control to an exception
handler and continue thread execution in the call stack frame in which the exception
handler is located.

The following code fragment illustrates how to use the __try and __except keywords
for structured exception handling:

__try

{

 // Place guarded code here.

}

__except (filter-expression)

{

 // Place exception-handler code here.

}

The __except keyword supports a filter expression, which can be a simple expression
or a filter function. The filter expression can evaluate to one of the following values:

■ EXCEPTION_CONTINUE_EXECUTION The system assumes that the
exception is resolved and continues thread execution at the point at which the
exception occurred. Filter functions typically return this value after handling the
exception to continue processing as normal.

■ EXCEPTION_CONTINUE_SEARCH The system continues its search for an
appropriate exception handler.

■ EXCEPTION_EXECUTE_HANDLER The system thread execution continues
sequentially from the exception handler rather than from the point of the
exception.

NOTE Exception handling support

Exception handling is an extension of the C language, but it is natively supported in C++.

Lesson 4: Implementing Exception Handling 121

Termination Handler Syntax
Windows Embedded CE supports termination handling. As a Microsoft extension to
the C and C++ languages, it enables you to guarantee that the system always runs a
certain block of code not matter how the flow of control leaves the guarded code
block. This code section is called a termination handler, and is used to perform
cleanup tasks even if an exception or some other error occurs in the guarded code.
For example, you can use a termination handler to close thread handles that are no
longer needed.

The following code fragment illustrates how to use the __try and __finally keywords
for structured exception handling:

__try

{

 // Place guarded code here.

}

__ finally

{

 // Place termination code here.

}

Termination handling supports the __leave keyword within the guarded section. This
keyword ends thread execution at the current position in the guarded section and
resumes thread execution at the first statement in the termination handler without
unwinding the call stack.

NOTE Using __try, __except,and __finally blocks

A single __try block cannot have both an exception handler and a termination handler. If you
must use both __except and __finally, use an outer try-except statement and an inner try-finally
statement.

Dynamic Memory Allocation
Dynamic memory allocation is an allocation technique that relies on structured
exception handling to minimize the total number of committed memory pages on the
system. This is particularly useful if you must perform large memory allocations. Pre-
committing an entire allocation can cause the system to run out of committable pages
and result in virtual memory allocation failures.

122 Chapter 3 Performing System Programming

The dynamic memory allocation technique is as follows:

1. Call VirtualAlloc with a base address of NULL to reserve a block of memory. The
system reserves this memory block without committing the pages.

2. Try to access a memory page. This raises an exception because you cannot read
from or write to a non-committed page. This illegal operation results in a page
fault exception. Figure 3–5 and Figure 3–6 show the outcome of an unhandled
page fault in an application called PageFault.exe.

3. Implement an exception handler based on a filter function. Commit a page in
the f i l ter funct ion f rom t he reserved region. I f successful , return
EXCEPTION_CONTINUE_EXECUTION to continue thread execution in the
__try block at the point where the exception occurred. If the page allocation
failed, return EXCEPTION_EXECUTE_HANDLER to invoke the exception
handler in the __except block and release the entire region of reserved and
committed pages.

Figure 3-5 An unhandled page fault exception from a user’s perspective

Figure 3-6 An unhandled page fault exception’s debug output over KITL in
Visual Studio 2005

Lesson 4: Implementing Exception Handling 123

The following code snippet illustrates the dynamic memory allocation technique
based on page fault exception handling:

#define PAGESTOTAL 42 // Max. number of pages

LPTSTR lpPage; // Page to commit

DWORD dwPageSize; // Page size, in bytes

INT ExceptionFilter(DWORD dwCode)

{

 LPVOID lpvPage;

 if (EXCEPTION_ACCESS_VIOLATION != dwCode)

 {

 // This is an unexpected exception!

 // Do not return EXCEPTION_EXECUTE_HANDLER

 // to handle this in the application process.

 // Instead, let the operating system handle it.

 return EXCEPTION_CONTINUE_SEARCH;

 }

 // Allocate page for read/write access.

 lpvPage = VirtualAlloc((LPVOID) lpPage,

 dwPageSize, MEM_COMMIT,

 PAGE_READWRITE);

 if (NULL == lpvPage)

 {

 // Continue thread execution

 // in __except block.

 return EXCEPTION_EXECUTE_HANDLER;

 }

 // Set lpPage to the next page.

 lpPage = (LPTSTR) ((PCHAR) lpPage + dwPageSize);

 // Continue thread execution in __try block.

 return EXCEPTION_CONTINUE_EXECUTION;

}

VOID DynamicVirtualAlloc()

{

 LPVOID lpvMem;

 LPTSTR lpPtr;

 DWORD i;

 BOOL bRet;

 // Get page size on computer.

 SYSTEM_INFO sSysInfo;

 GetSystemInfo(&sSysInfo);

 dwPageSize = sSysInfo.dwPageSize;

 // Reserve memory pages without committing.

124 Chapter 3 Performing System Programming

 lpvMem = VirtualAlloc(NULL, PAGESTOTAL*dwPageSize,

 MEM_RESERVE, PAGE_NOACCESS);

 lpPtr = lpPage = (LPTSTR) lpvMem;

 // Use structured exception handling when accessing the pages.

 for (i=0; i < PAGESTOTAL*dwPageSize; i++)

 {

 __try

 { // Write to memory.

 lpPtr[i] = 'x';

 }

 __except (ExceptionFilter(GetExceptionCode()))

 { // Filter function unsuccessful. Abort mission.

 ExitProcess(GetLastError());

 }

 }

 // Release the memory.

 bRet = VirtualFree(lpvMem, 0, MEM_RELEASE);

}

Lesson Summary
Windows Embedded CE supports exception handling and termination handling
natively. Exceptions in the processor, operating system, and applications are raised in
response to improper instruction sequences, attempts to access an unavailable
memory address, inaccessible device resources, invalid parameters, or any other
operation that requires special processing, such as dynamic memory allocations. You
can use try–except statements to react to error conditions outside the normal flow of
control and try–finally statements to run code no matter how the flow of control
leaves the guarded __try code block.

Exception handling supports filtering expressions and filtering functions, which
enable you to control how you respond to raised events. It is not advisable to catch all
exceptions because unexpected application behavior can be the result of malicious
code. Only handle those exceptions that need to be dealt with directly for reliable and
robust application behavior. The operating system can forward any unhandled
exceptions to a postmortem debugger to create a memory dump and terminate the
application.

EXAM TIP

To pass the certification exam, make sure you understand how to use exception handling and
termination handling in Windows Embedded CE 6.0 R2.

Lesson 5: Implementing Power Management 125

Lesson 5: Implementing Power Management
Power management is essential for Windows Embedded CE devices. By lowering
power consumption, you extend battery life and ensure a long-lasting, positive user
experience. This is the ultimate goal of power management on portable devices.
Stationary devices also benefit from power management. Regardless of equipment
size, you can reduce operating costs, heat dissipation, mechanical wear and tear, and
noise levels if you switch the device into a low-power state after a period of inactivity.
And of course, implementing effective power-management features helps to lessen the
burden on our environment.

After this lesson, you will be able to:

■ Enable power management on a target device.

■ Implement power-management features in applications.

Estimated lesson time: 40 minutes.

Power Manager Overview
On Windows Embedded CE, Power Manager (PM.dll) is a kernel component that
integrates with the Device Manager (Device.exe) to implement power management
features. Essentially, Power Manager acts as a mediator between the kernel, OEM
adaptation layer (OAL), and drivers for peripheral devices and applications. By
separating the kernel and OAL from drivers and applications, drivers and
applications can manage their own power state separately from the system state.
Drivers and applications interface with Power Manager to receive notifications about
power events and to perform power management functions. Power Manager has the
ability to set the system power state in response to events and timers, control driver
power states, and respond to OAL events that require a power state change, such as
when the battery power state is critical.

Power Manager Components and Architecture
Power Manager exposes a notification interface, an application interface, and a device
interface according to its tasks. The notification interface enables applications to
receive information about power management events, such as when the system state
or a device power state changes. In response to these events, power management–
enabled applications use the application interface to interact with Power Manager to
communicate their power management requirements or change the system power

126 Chapter 3 Performing System Programming

state. The device interface, on the other hand, provides a mechanism to control the
power level of device drivers. Power Manager can set device power states separately
from the system power state. Similar to applications, device drivers may use the driver
interface to communicate their power requirements back to Power Manager. The
important point is that Power Manager and the Power Manager APIs centralize power
management on Windows Embedded CE, as illustrated in Figure 3–7.

Figure 3-7 Power Manager and power management interaction

Power Manager Source Code

Windows Embedded CE comes with source code for Power Manager, which is found
in the %_WINCEROOT%\Public\Common\Oak\Drivers\Pm folder on your
development computer. Customizing this code provides personalized power
handling mechanisms on a target device. For example, an Original Equipment
Manufacturer (OEM) can implement additional logic to shut down special
components before calling the PowerOffSystem function. See Chapter 1,
“Customizing the Operating System Design” for techniques to clone and customize
standard Windows Embedded CE components.

Notification
Message Queue

Application

Power Manager APIs

Driver
Power

Manager

Lesson 5: Implementing Power Management 127

Driver Power States
Applications and device drivers are able to use the DevicePowerNotify function to
control the power state of peripheral devices. For instance, you can call
DevicePowerNotify to inform Power Manager that you want to change the power level
of a backlight driver, such as BLK1:. Power Manager expects you to specify the desired
power state at the one of the following five different power levels, according to the
hardware device capabilities:

■ D0 Full On; the device is fully functional.

■ D1 Low On; the device is functional, but the performance is reduced.

■ D2 Standby; the device is partially powered and will wake up on requests.

■ D3 Sleep; the device is partially powered. In this state the device still has power
and can raise interrupts that will wake up the CPU (device-initiated wakeup).

■ D4 Off; device has no power. The device should not consume any significant
power in this state.

NOTE CE device power state levels

The device power states (D0 through D4) are guidelines to help OEMs implement power man-
agement functions on their platforms. Power Manager does not impose restrictions on device
power consumption, responsiveness, or capabilities in any of the states. As a general rule,
higher-numbered states should consume less power than lower numbered states and power
states D0 and D1 should be for devices perceived as operational from the perspective of the
user. Device drivers that manage the power level of a physical device with fewer granularities
can implement a subset of the power states. D0 is the only required power state.

System Power States
In addition to sending power-state change notifications to device drivers in response
to application and device driver requests, Power Manager can also transition the
power state of the entire system in response to hardware-related events and software
requests. Hardware events enable Power Manager to respond to low and critical
battery levels and transitions from battery power to AC power. Software requests
enable applications to request a change of the system power state in a call to Power
Manager’s SetSystemPowerState function.

The default Power Manager implementation supports the following four system
power states:

■ On The system is fully operational and on full power.

128 Chapter 3 Performing System Programming

■ UserIdle The user is passively using the device. There was no user input for a
configurable period of time.

■ SystemIdle The user is not using the device. There was no system activity for a
configurable period of time.

■ Suspend The device is powered down, but supports device-initiated wakeup.

It is important to keep in mind that system power states depend on the requirements
and capabilities of the target device. OEMs can define their own or additional system
power states, such as InCradle and OutOfCradle. Windows Embedded CE does not
impose a limit on the number of system power states that can be defined, but all
system power states eventually translate into one of the device power states,
mentioned earlier in this lesson.

Figure 3–8 illustrates the relationship between the default system power states and
the device power states.

Figure 3-8 Default system power states and associated device power states

Activity Timers
System state transitions are based on activity timers and corresponding events. If a
user is not using the device, a timer eventually expires and raises an inactivity event,
which in turn causes Power Manager to transition the system into Suspend power
state. When the user returns and interacts with the system again by providing input,
an activity event occurs causing Power Manager to transition the system back into an
On power state. However, this simplified model does not take into account prolonged
periods of user activity without input, such as a user watching a video clip on a
personal digital assistant (PDA). This simplified model also does not take into
account target devices without any direct user input methods, as in the case of display
panels. To support these scenarios, the default Power Manager implementation
distinguishes between user activity and system activity and accordingly transitions
the system power state, as illustrated in Figure 3–9.

Driver State : D0 Driver State : D1

Driver State : D3 Driver State : D2

SystemIdle

UserIdleOn

Suspend

Lesson 5: Implementing Power Management 129

Figure 3-9 Activity timers, events, and system power state transitions

To configure system-activity and user-activity timeouts, use the Power Control Panel
applet. You can also implement additional timers and set their timeouts by editing the
registry directly. Windows Embedded CE does not limit the number of timers you can
create. At startup, Power Manager reads the registry keys, enumerates the activity
timers, and creates the associated events. Table 3–16 lists the registry settings for the
SystemActivity timer. OEMs can add similar registry keys and configure these values
for additional timers.

Table 3-16 Registry settings for activity timers

Location HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Control \Power\ActivityTimers\SystemActivity

Entry Timeout WakeSources

Type REG_DWORD REG_MULTI_SZ

Value A (10 minutes) 0x20

Description The Timeout registry
entry defines the timer
threshold in minutes.

The WakeSources registry entry is
optional and defines a list of
identifiers for possible wake sources.
During device-initiated wakeup,
Power Manager uses the
IOCTL_HAL_GET_WAKE_SOURCE
input and output control (IOCTL)
code to determine the wake source
and sets associated activity timers
to active.

UserActivity Timeout SystemActivity Timeout

SystemActivity Event

UserActivity Event

SystemIdleOn UserIdle

130 Chapter 3 Performing System Programming

NOTE Activity timers

Defining activity timers causes the Power Manager to construct a set of named events for reset-
ting the timer and for obtaining activity status. For more information, see the section “Activity
Timers” in the Windows Embedded CE 6.0 Documentation available on the Microsoft MSDN
website at http://msdn2.microsoft.com/en-us/library/aa923909.aspx.

Power Management API
As mentioned earlier in this lesson, Power Manager exposes three interfaces to enable
applications and drives for power management: notification interface, driver interface,
and application interface.

Notification Interface
The notification interface provides two functions that applications can use to register and
deregister for power notifications through message queues, as listed in Table 3–17. It is
important to note that power notifications are multicast messages, which means that
Power Manager sends these notification messages only to registered processes. In this
way, power management–enabled applications can seamlessly coexist on Windows
Embedded CE with applications that do not implement the Power Management API.

Table 3-17 Power Management notification interface

Function Description

RequestPowerNotifications Registers an application process with Power Mana-
ger to receive power notifications. Power Manager
then sends the following notification messages:

■ PBT_RESUME The system resumes from Sus-
pend state.

■ PBT_POWERSTATUSCHANGE The system
transitions between AC power and battery
power.

■ PBT_TRANSITION The system changes to a
new power state.

■ PBT_POWERINFOCHANGE The battery sta-
tus changes. This message is only valid if a bat-
tery driver is loaded.

Lesson 5: Implementing Power Management 131

The following sample code illustrates how to use power notifications:

 // Size of a POWER_BROADCAST message.

 DWORD cbPowerMsgSize =

 sizeof POWER_BROADCAST + (MAX_PATH * sizeof TCHAR);

 // Initialize a MSGQUEUEOPTIONS structure.

 MSGQUEUEOPTIONS mqo;

 mqo.dwSize = sizeof(MSGQUEUEOPTIONS);

 mqo.dwFlags = MSGQUEUE_NOPRECOMMIT;

 mqo.dwMaxMessages = 4;

 mqo.cbMaxMessage = cbPowerMsgSize;

 mqo.bReadAccess = TRUE;

 //Create a message queue to receive power notifications.

 HANDLE hPowerMsgQ = CreateMsgQueue(NULL, &mqo);

 if (NULL == hPowerMsgQ)

 {

 RETAILMSG(1, (L"CreateMsgQueue failed: %x\n", GetLastError()));

 return ERROR;

 }

 // Request power notifications.

 HANDLE hPowerNotifications = RequestPowerNotifications(hPowerMsgQ,

 PBT_TRANSITION |

 PBT_RESUME |

 PBT_POWERINFOCHANGE);

 // Wait for a power notification or for the app to exit.

 while(WaitForSingleObject(hPowerMsgQ, FALSE, INFINITE) == WAIT_OBJECT_0)

 {

 DWORD cbRead;

 DWORD dwFlags;

 POWER_BROADCAST *ppb = (POWER_BROADCAST*) new BYTE[cbPowerMsgSize];

 // Loop through in case there is more than 1 msg.

 while(ReadMsgQueue(hPowerMsgQ, ppb, cbPowerMsgSize, &cbRead,

 0, &dwFlags))

 {

 \\ Perform action according to the message type.

 }

 }

StopPowerNotifications Unregisters an application process so it no longer
receives power notifications.

Table 3-17 Power Management notification interface (Continued)

Function Description

132 Chapter 3 Performing System Programming

Device Driver Interface
In order to integrate with the Power Manager, device drivers must support a set of I/
O controls (IOCTLs). Power Manager uses these to query device-specific power
capabilities as well as to set and change the device’s power state, as illustrated in
Figure 3–10. Based on the Power Manager IOCTLs, the device driver should put the
hardware device into a corresponding power configuration.

Figure 3-10 Power Manager and device driver interaction

Power Manager uses the following IOCTLs to interact with device drivers:

■ IOCTL_POWER_CAPABILITIES Power Manager checks the power
management capabilities of the device driver. The returned information should
reflect the capabilities of the hardware and the driver managing the hardware
device. The driver must return only supported Dx states.

■ IOCTL_POWER_SET Power Manager forces the driver to switch to a specified
Dx state. The driver must perform the power transition.

■ IOCTL_POWER_QUERY Power Manger checks to see if the driver is able to
change the state of the device.

■ IOCTL_POWER_GET Power Manager wants to determine the current power
state of the device.

■ IOCTL_REGISTER_POWER_RELATIONSHIP Power Manager notifies a
parent driver to register all child devices that it controls. Power Manager sends
this IOCTL only to devices that include the POWER_CAP_PARENT flag in the
Flags member of the POWER_CAPABILITIES structure.

Power Manager

Device Driver

PM APIs

DevicePowerNotify DeviceIoControl

Lesson 5: Implementing Power Management 133

NOTE Internal power state transitions

To ensure reliable power management, device drivers should not change their own internal
power state without the involvement of Power Manager. If a driver requires a power state tran-
sition, the driver should use the DevicePowerNotify function to request the power state change.
The driver can then change its internal power state when Power Manager sends a power state
change request back to the driver.

Application Interface
The application interface provides functions that applications can use to manage the
power state of the system and of individual devices through Power Manager. Table
3–18 summarizes these power management functions.

Table 3-18 Application interface

Function Description

GetSystemPowerState Retrieves the current system power state.

SetSystemPowerState Requests a power state change. When switching to
Suspend mode, the function will return after the
resume because suspend is transparent to the
system. After the resume, you can analyze the
notification message to identify that the system
resumed from suspend.

SetPowerRequirement Requests a minimal power state for a device.

ReleasePowerRequirement Releases a power requirement previously set with
the SetPowerRequirement function and restores
the original device power state.

GetDevicePower Retrieves the current power state of a specified
device.

SetDevicePower Requests a power state change for a device.

134 Chapter 3 Performing System Programming

Power State Configuration
As illustrated in Figure 3–8, Power Manager associates system power states with
device power states to keep system and devices synchronized. Unless configured
otherwise, Power Manager enforces the following default system-state-to-device-state
mappings: On = D0, UserIdle = D1, SystemIdle = D2, and Suspend = D3. Overriding
this association for individual devices and device classes can be accomplished by
means of explicit registry settings.

Overriding the Power State Configuration for an Individual Device
The default Power Manager implementation maintains system-state-to-device-state
mappings in t he registr y under the HKEY_LOC AL_MACHINE\System
\CurrentControlSet\State key. Each system power state corresponds to a separate
subkey and you can create additional subkeys for OEM-specific power states.

Table 3–19 shows a sample configuration for the system power state On. This
configuration causes Power Manager to switch all devices, except the backlight driver
BLK1: driver, into the D0 device power state. The backlight driver BLK1: can only go
to the D2 state.

Table 3-19 Default and driver-specific power state definitions for system power
state On

Location HKEY_LOCAL_MACHINE\System\CurrentControlSet
\State\On

Entry Flags Default BKL1:

Type REG_DWORD REG_DWORD REG_DWORD

Value 0x00010000
(POWER_STATE_ON)

0 (D0) 2 (D2)

Description Identifies the system
power state associated
with this registry key.
For a list of possible
flags, see the Pm.h
header file in the
Public\Common\Sdk
\Inc folder.

Sets the power
state for drivers
by default to the
D0 state when
the system power
state is On.

Sets the backlight
driver BLK1: to the
D2 state when the
system power state
is On.

Lesson 5: Implementing Power Management 135

Overriding the Power State Configuration for Device Classes
Defining device power state for multiple system power states individually can be a
tedious task. Power Manager facilitates the configuration by supporting device classes
based on IClass values, which can be used to define the power management rules. The
following three default class definitions are found under the HKEY_LOCAL_MACHINE
\System\CurrentControlSet\Control\Power\Interfaces registry key.

■ {A3292B7-920C-486b-B0E6-92A702A99B35} Generic power management-
enabled devices.

■ {8DD679CE-8AB4-43c8-A14A-EA4963FAA715} Power- management-enabled
block devices.

■ {98C5250D-C29A-4985-AE5F-AFE5367E5006} Power-management-enabled
Network Driver Interface Specification (NDIS) miniport drivers.

Table 3–20 shows a sample configuration for the NDIS device class, which specifies
that NDIS drivers only go as high as the D4 state.

Processor Idle State
In addition to power-management-enabled applications and device drivers, the kernel
also contributes to power management. The kernel calls the OEMIdle function, part
of the OAL, when no threads are ready to run. This action switches the processor into
idle state, which includes saving the current context, placing the memory into a
refresh state, and stopping the clock. The processor idle state reduces power
consumption to the lowest possible level while retaining the ability to return from the
idle state quickly.

Table 3-20 Sample power state definition for NDIS device class

Location HKEY_LOCAL_MACHINE\System CurrentControlSet
\Control\Power\State\On\{98C5250D-C29A-4985-AE5F-
AFE5367E5006}

Entry Default

Type REG_DWORD

Value 4 (D4)

Description Sets the device power state for NDIS drivers to the D4 state when
the system power state is On.

136 Chapter 3 Performing System Programming

It is important to keep in mind that the OEMIdle function does not involve Power
Manager. The kernel calls the OEMIdle function directly and it is up to the OAL to
switch the hardware into an appropriate idle or sleep state. The kernel passes a
DWORD value (dwReschedTime) to OEMIdle to indicate the maximum period of idle
time. When this time passes or the maximum delay supported by the hardware timer
is reached, the processor switches back to non-idle mode, the previous state is
restored, and the scheduler is invoked. If there still is no thread ready to run, the
kernel immediately calls OEMIdle again. Driver events, as in the response to user
input via keyboard or stylus, may occur at any time and cause the system to stop
idling before the system timer starts.

The scheduler is, by default, based on a static timer and system ticks at a one-
millisecond frequency. However, the system can optimize power consumption by
using dynamic timers and by setting the system timer to the next timeout identified
by using the scheduler table content. The processor will then not switch back out of
idle mode with every tick. Instead, the processor switches only to non-idle mode after
the timeout defined by dwReschedTime expires or an interrupt occurres.

Lesson Summary
Windows Embedded CE 6.0 R2 provides a default Power Manager implementation
with a set of power-management APIs that you can use to manage the power state of
the system and its devices. It also provides the OEMIdle function, which it executes
when the system does not have any threads scheduled in order to provide original
equipment manufacturers (OEMs) a chance to put the system into a low power idle
state for a specified period of time.

Power Manager is a kernel component that exposes a notification interface, an
application interface, and a device interface. It acts as a mediator between kernel and
OAL on one side and device drivers and applications on the other side. Applications
and device drivers can use the DevicePowerNotify function to control the power state
of peripheral devices at five different power levels. Device power states may also
associate with default and custom system power states to keep system and devices
synchronized. Based on activity times and corresponding events, Power Manger can
automatically perform system state transitions. The four default system power states
are On, UserIdle, SystemIdle, and Suspend. Customizations for system-state-to-
device-state mapping take place in the registry settings of individual devices and
device classes.

Lesson 5: Implementing Power Management 137

In addition to Power Manager, the kernel supports power management by means of
the OEMIdle function. Switching the processor into idle state reduces power
consumption to the lowest possible level while retaining the ability to return from the
idle state quickly. The processor will return to non-idle state periodically or when
interrupts occur, as when it responds to user input or when a device requests access
to memory for data transfer.

You can significantly reduce the power consumption of a device if you implement
power management properly using Power Manager and OEMIdle, thereby increasing
battery life, decreasing operating costs, and extending device lifetime.

138 Chapter 3 Performing System Programming

Lab 3: Kiosk Mode, Threads, and Power Management
In this lab, you develop a kiosk application and configure a target device to run this
application instead of the standard shell. You then extend this application to run
multiple threads in parallel in the application process and analyze the thread
execution by using the Remote Kernel Tracker tool. Subsequently, you enable this
application for power management.

NOTE Detailed step-by-step instructions

To help you successfully master the procedures presented in this lab, see the document
“Detailed Step-by-Step Instructions for Lab 3” in the companion material for this book.

� Create a Thread

1. Using the New Project Wizard, create a new WCE Console Application named
HelloWorld. Use the Typical Hello_World Application option.

2. Before the _tmain function, implement a thread function named ThreadProc:

DWORD WINAPI ThreadProc(LPVOID lpParameter)

{

 RETAILMSG(1,(TEXT("Thread started")));

 // Suspend Thread execution for 3 seconds

 Sleep(3000);

 RETAILMSG(1,(TEXT("Thread Ended")));

 // Return code of the thread 0,

 // usually used to indicate no errors.

 return 0;

}

3. By using the CreateThread function, start a thread:

HANDLE hThread = CreateThread(NULL, 0, ThreadProc, NULL, 0, NULL);

4. Check the returned value of CreateThread to verify that the thread was created
successfully.

5. Wait for the thread to reach the end of the thread function and exit:

WaitForSingleObject(hThread, INFINITE);

6. Build the run-time image and download it to the target device.

7. Launch Remote Kernel Tracker and analyze how threads are managed on the
system.

Lab 3: Kiosk Mode, Threads, and Power Management 139

8. Start the HelloWorld application and follow the thread execution in the Remote
Kernel Tracker window, as illustrated in Figure 3–11.

Figure 3-11 Tracking thread execution in Remote Kernel Tracker tool

� Enable Power Management Notification Messages

1. Continue to use the HelloWorld application in Visual Studio.

2. Generate power-management notifications in more frequent intervals by going
into the subproject registry settings and setting the registry entry for the
UserIdle timeout in AC power mode (ACUserIdle) to five seconds:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\Timeouts]

 "ACUserIdle"=dword:5 ; in seconds

3. In the ThreadProc function, create a message queue object:

// Size of a POWER_BROADCAST message.

DWORD cbPowerMsgSize =

 sizeof POWER_BROADCAST + (MAX_PATH * sizeof TCHAR);

// Initialize our MSGQUEUEOPTIONS structure.

MSGQUEUEOPTIONS mqo;

mqo.dwSize = sizeof(MSGQUEUEOPTIONS);

mqo.dwFlags = MSGQUEUE_NOPRECOMMIT;

mqo.dwMaxMessages = 4;

mqo.cbMaxMessage = cbPowerMsgSize;

mqo.bReadAccess = TRUE;

//Create a message queue to receive power notifications.

HANDLE hPowerMsgQ = CreateMsgQueue(NULL, &mqo);

if (NULL == hPowerMsgQ)

140 Chapter 3 Performing System Programming

{

 RETAILMSG(1, (L"CreateMsgQueue failed: %x\n", GetLastError()));

 return -1;

}

4. Request to receive notifications from Power Manager and check the received
messages:

// Request power notifications

HANDLE hPowerNotifications = RequestPowerNotifications(hPowerMsgQ,

 PBT_TRANSITION |

 PBT_RESUME |

 PBT_POWERINFOCHANGE);

DWORD dwCounter = 20;

// Wait for a power notification or for the app to exit

while(dwCounter-- &&

 WaitForSinglObject(hPowerMsgQ, INFINITE) == WAIT_OBJECT_0)

{

 DWORD cbRead;

 DWORD dwFlags;

 POWER_BROADCAST *ppb =

 (POWER_BROADCAST*) new BYTE[cbPowerMsgSize];

 // loop through in case there is more than 1 msg.

 while(ReadMsgQueue(hPowerMsgQ, ppb, cbPowerMsgSize,

 &cbRead, 0, &dwFlags))

 {

 switch(ppb->Message)

 {

 case PBT_TRANSITION:

 {

 RETAILMSG(1,(L"Notification: PBT_TRANSITION\n"));

 if(ppb->Length)

 {

 RETAILMSG(1,(L"SystemPowerState: %s\n",

 ppb->SystemPowerState));

 }

 break;

 }

 case PBT_RESUME:

 {

 RETAILMSG(1,(L"Notification: PBT_RESUME\n"));

 break;

 }

 case PBT_POWERINFOCHANGE:

 {

 RETAILMSG(1,(L"Notification: PBT_POWERINFOCHANGE\n"));

 break;

 }

 default:

 break;

Lab 3: Kiosk Mode, Threads, and Power Management 141

 }

 }

 delete[] ppb;

}

5. Build the application and rebuild the run-time image.

6. Start the run-time image.

7. You generate user activity by moving the mouse cursor. After five seconds of
inactivity, Power Manager should notify the application, as illustrated in Figure
3–12.

Figure 3-12 Received Power Management notifications

� Enable Kiosk Mode

1. Create a WCE Application named Subproject_Shell using the Subproject
Wizard. Use the Typical Hello_World Application option.

2. Before the first LoadString line, add a SignalStarted instruction.

// Initialization complete,

// call SignalStarted...

SignalStarted(_wtol(lpCmdLine));

3. Build the application.

4. Add a registry key in the subproject .reg file to launch the application at startup.
Add the following lines, which create the corresponding Launch99 and
Depend99 entries:

[HKEY_LOCAL_MACHINE\INIT]

"Launch99"="Subproject_Shell.exe"

"Depend99"=hex:14,00, 1e,00

5. Build and start the run-time image.

6. Verify that the Subproject_Shell application starts automatically.

142 Chapter 3 Performing System Programming

7. Replace the reference to Explorer.exe in the Launch50 registry key with a
reference to the Subproject_Shell application, as follows:

[HKEY_LOCAL_MACHINE\INIT]

"Launch50"="Subproject_Shell.exe"

"Depend50"=hex:14,00, 1e,00

8. Build and start the run-time image.

9. Verify that the target device runs the Subproject_Shell application in place of the
standard shell, as illustrated in Figure 3–13.

Figure 3-13 Replacing the standard shell with a Subproject_Shell application

Chapter 3 Review 143

Chapter Review
Windows Embedded CE provides a variety of tools, features, and APIs that you can
use to ensure optimal system performance and power consumption on your target
devices. Performance tools, such as ILTiming, OSBench, and Remote Performance
Monitor, can help identify performance issues within and between drivers,
applications, and OAL code, such as deadlocks or other issues related to thread
synchronization. The Remote Kernel Tracker enables you to examine process and
thread execution in great detail, while relying on structured exception handling,
which Windows Embedded CE supports natively.

Windows Embedded CE is a componentized operating system. You can include or
exclude optional components and even replace the standard shell with a custom
application. Replacing the standard shell with an application configured to start
automatically lays the groundwork for enabling a kiosk configuration. Windows
Embedded CE runs with a black shell in a kiosk configuration, meaning that the user
cannot start or switch to other applications on your device.

Regardless of the shell, you can implement power management functions in your
device drivers and applications to control energy usage. The default Power Manager
implementation covers the typical needs, but OEMs with special requirements add
custom logic. The Power Manager source code is included with Windows Embedded
CE. The power management framework is flexible and supports any number of
custom system power states that can map device power states by means of registry
settings.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ ILTiming

■ Kiosk Mode

■ Synchronization Objects

■ Power Manager

■ RequestDeviceNotifications

144 Chapter 3 Review

Suggested Practices
Complete the following tasks to help you successfully master the exam objectives
presented in this chapter:

Use the ILTiming and OSBench Tools

Use Iltiming and OSBench on the emulator device to examine the emulated ARMV4
processor’s performance.

Implement a Custom Shell
Customize the look and feel of the target device by using Task Manager, included in
Windows Embedded CE with source code, to replace the shell.

Experiment with Multithreaded Applications and Critical Sections
Use critical section objects in a multithreaded application to protect access to a global
variable. Complete the following tasks:

1. Create two threads in the main code of the applications and in the thread
functions wait two seconds (Sleep(2000))and three seconds (Sleep(3000)) in
an infinite loop. The primary thread of the application should wait until both
threads exit by using the WaitForMultipleObjects function.

2. Create a global variable and access it from both threads. One thread should write
to the variable and the other thread should read the variable. By accessing the
variable before and after the first Sleep and displaying the values, you should be
able visualize concurrent access.

3. Protect access to the variable by using a CriticalSection object shared between
both threads. Grab the critical section at the beginnings of the loops and release
it at the ends of the loops. Compare the results with the previous output.

145

Chapter 4

Debugging and Testing the System

Debugging and system testing are vital tasks during the software-development cycle,
with the ultimate goal to identify and solve software-related and hardware-related
defects on a target device. Debugging generally refers to the process of stepping
through the code and analyzing debug messages during code execution in order to
diagnose root causes of errors. It can also be an efficient tool to study the
implementation of system components and applications in general. System testing,
on the other hand, is a quality-assurance activity to validate the system in its final
configuration in terms of typical usage scenarios, performance, reliability, security,
and any other relevant aspects. The overall purpose of system testing is to discover
product defects and faults, such as memory leaks, deadlocks, or hardware conflicts,
whereas debugging is a means to get to the bottom of these problems and eliminate
them. For many developers of small-footprint and consumer devices, locating and
eliminating system defects is the hardest part of software development, with a
measurable impact on productivity. This chapter covers the debugging and testing
tools available in Microsoft® Visual Studio® 2005 with Platform Builder for Microsoft
Windows® Embedded CE 6.0 R2 and in the Windows Embedded CE Test Kit (CETK)
to help you automate and accelerate these processes so that you can release your
systems faster and with fewer bugs. The better you master these tools, the more time
you can spend writing code instead of fixing code.

Exam objectives in this chapter:

■ Identifying requirements for debugging a run-time image

■ Using debugger features to analyze code execution

■ Understanding debug zones to manage the output of debug messages

■ Utilizing the CETK tool to run default and user-defined tests

■ Debugging the boot loader and operating system (OS)

146 Chapter 4 Debugging and Testing the System

Before You Begin
To complete the lessons in this chapter, you must have the following:

■ At least some basic knowledge about Windows Embedded CE software
development and debugging concepts.

■ A basic understanding of the driver architectures supported in Windows
Embedded CE.

■ Familiarity with OS design and system configuration concepts.

■ A development computer with Microsoft Visual Studio 2005 Service Pack 1 and
Platform Builder for Windows Embedded CE 6.0 R2 installed.

Lesson 1: Detecting Software-Related Errors 147

Lesson 1: Detecting Software-Related Errors
Software-related errors range from simple typos, uninitialized variables, and infinite
loops to more complex and profound issues, such as critical race conditions and
other thread synchronization problems. Fortunately, the vast majority of errors are
easy to fix once they are located. The most cost-effective way to find these errors is
through code analysis. You can use a variety of tools on Windows Embedded CE
devices to debug the operating system and step through drivers and applications. A
good understanding of these debugging tools will help you accelerate your code
analysis so that you can fix software errors as efficiently as possible.

After this lesson, you will be able to:

■ Identify important debugging tools for Windows Embedded CE.

■ Control debug messages through debug zones in drivers and applications.

■ Use the target control shell to identify memory issues.

Estimated lesson time: 90 minutes.

Debugging and Target Device Control
The primary tool to debug and control a Windows Embedded CE target device is by
using Platform Builder on the development workstation, as illustrated in Figure 4–1.
The Platform Builder integrated development environment (IDE) includes a variety of
tools for this purpose, such as a system debugger, CE target control shell (CESH), and
debug message (DbgMsg) feature, that you can use to step through code after
reaching a breakpoint or to display information on memory, variables, and processes.
Moreover, the Platform Builder IDE includes a collection of remote tools, such as
Heap Walker, Process Viewer, and Kernel Tracker, to analyze the state of the target
device at run time.

148 Chapter 4 Debugging and Testing the System

Figure 4-1 CE debugging and target control architecture

In order to communicate with the target device, Platform Builder relies on the Core
Connectivity (CoreCon) infrastructure and debugging components deployed on the
target device as part of the run-time image. The CoreCon infrastructure provides OS
Access (OsAxS), target control, and DbgMsg services to Platform Builder on one side,
and interfaces with the target device through the Kernel Independent Transport
Layer (KITL) and the bootstrap service on the other side. On the target device itself,
the debugging and target control architecture relies on KITL and the boot loader for
communication purposes. If the run-time image includes debugging components,
such as the kernel debugger stub (KdStub), hardware debugger stub (HdStub), and
the OsAxS library, you can use Platform Builder to obtain kernel run-time information

Development Workstation

Target Device

OsAxs HdStub

KdStub

Kernel

Boot LoaderKITL

eXDI Service

Bootstrap
Service

KITL Service

OS Access
Target Control

Service
DbgMsg
Service

Debug
Message

System
Debugger

Target Control
Shell (CESH)

Platform
Builder

CoreCon
Layer

Lesson 1: Detecting Software-Related Errors 149

and perform just-in-time (JIT) debugging. Platform Builder also supports hardware-
assisted debugging through Extended Debugging Interface (eXDI), so that you can
debug target device routines prior to loading the kernel.

Kernel Debugger
The Kernel Debugger is the CE software-debugging engine to debug kernel
components and CE applications. On the development workstation, you work
directly in Platform Builder, such as to insert or remove breakpoints in the source
code and run the application, yet you must include support for KITL and debugging
libraries (KdStub and OsAxS) in the run-time image so that Platform Builder can
capture debugging information and control the target device. Lesson 2, “Configuring
the Run-Time Image to Enable Debugging,” later in this chapter provides detailed
information about system configurations for kernel debugging.

The following target-side components are essential for kernel debugging:

■ KdStub Captures exceptions and breakpoints, retrieves kernel information,
and performs kernel operations.

■ OsAxS Retrieves information about the state of the operating system, such as
information about memory allocations, active processes and threads, proxies,
and loaded dynamic-link libraries (DLLs).

NOTE Application debugging in Windows Embedded CE

By using the Kernel Debugger, you can control the entire run-time image as well as individual
applications. However, KdStub is a kernel component that receives first-chance and second-
chance exceptions, as explained in Chapter 3, “Performing System Programming.” If you stop the
Kernel Debugger during a session without stopping the target-side KdStub module first and an
exception occurs, the run-time image stops responding until you reconnect the debugger,
because the Kernel Debugger must handle the exception so that the target device can continue
to run.

Debug Message Service
In Platform Builder, when you attach to a KITL–enabled and KdStub–enabled target
device, you can examine debug information in the Output window of Microsoft
Visual Studio 2005, which Platform Builder obtains from the target device by using
the DbgMsg service in the CoreCon infrastructure. Debug messages provide detailed
information about the running processes, signal potentially critical issues, such as
invalid input, and give hints about the location of a defect in the code that you can

150 Chapter 4 Debugging and Testing the System

then study further by setting a breakpoint and stepping through the code in Kernel
Debugger. One of the kernel debugger stub’s features is support for dynamic
management of debug messages, so you can configure the debugging verbosity
without source code modifications. Among other things, you can exclude
Timestamps, Process IDs, or Thread IDs, if you display the Debug Message Options
window that you can reach through the Target menu in Visual Studio. You can also
send the debug output to a file for analysis in a separate tool. On the target device, all
debug messages are sent directly to the default output stream handled through the
NKDbgPrintf function.

NOTE Debug messages with and without KITL

When both Kernel Debugger and KITL are enabled, the debug messages are displayed in the
Output window of Visual Studio. If KITL is not available, the debug information is transferred
from the target device to the development computer over a serial port configured and used by
the OEM adaptation layer (OAL).

Macros for Debug Messages
To generate debug information, Windows Embedded CE provides several debugging
macros that generally fall into two categories, debug macros and retail macros. Debug
macros output information only if the code is compiled in the debug build
configuration (environment variable WINCEDEBUG=debug), while retail macros
genera te in for mat ion in bot h debug and re t a i l bu i ld conf igura t ions
(WINCEDEBUG=retail) unless you build the run-time image in ship configuration
(WINCESHIP=1). In ship configuration, all debugging macros are disabled.

Table 4–1 summarizes the debugging macros that you can insert in your code to
generate debug information.

Table 4-1 Windows Embedded CE macros to output debugging messages

Macro Description

DEBUGMSG Conditionally prints a printf-style debug message to the default
output stream (that is, the Output window in Visual Studio or a
specified file) if the run-time image is compiled in debug build
configuration.

Lesson 1: Detecting Software-Related Errors 151

Debug Zones
Debug messages are particularly useful tools to analyze multi-threaded processes,
especially thread synchronization and other timing issues that are difficult to detect
by stepping through the code. However, the number of debug messages generated on

RETAILMSG Conditionally prints a printf-style debug message to the default
output stream (that is, the Output window in Visual Studio or a
specified file) if the run-time image is compiled in debug or
release build configuration, yet not in ship build configuration.

ERRORMSG Conditionally prints additional printf-style debug information to
the default output stream (that is, the Output window in Visual
Studio or a specified file) if the run-time image is compiled in
debug or release build configuration, yet not in ship build con-
figuration. This error information includes the name of the
source code file and the line number, which can help to quickly
locate the line of code that generated the message.

ASSERTMSG Conditionally prints a printf-style debug message to the default
output stream (that is, the Output window in Visual Studio or a
specified file) and then breaks into the debugger, if the run-time
image is compiled in debug configuration. In fact, ASSERTMSG
calls DEBUGMSG followed by DBGCHK.

DEBUGLED Conditionally passes a WORD value to the WriteDebugLED
function, if the run-time image is compiled in debug build
configuration. This macro is useful on devices that provide only
light-emitting diodes (LEDs) to indicate the system status and
requires an implementation of the OEMWriteDebugLED
function in the OAL.

RETAILLED Conditionally passes a WORD value to the WriteDebugLED
function, if the run-time image is compiled in debug or release
build configuration. This macro is useful on devices that provide
only LEDs to indicate the system status and requires an imple-
mentation of the OEMWriteDebugLED function in the OAL.

Table 4-1 Windows Embedded CE macros to output debugging messages (Continued)

Macro Description

152 Chapter 4 Debugging and Testing the System

a target device can be overwhelming if you heavily use debugging macros in your
code. To control the amount of information generated, debugging macros enable you
to specify a conditional expression. For example, the following code outputs an error
message if the dwCurrentIteration value is greater than the maximum possible value.

ERRORMSG(dwCurrentIteration > dwMaxIteration,

 (TEXT("Iteration error: the counter reached %u, when max allowed is %u\r\n"),

 dwCurrentIteration, dwMaxIteration));

In the example above, ERRORMSG outputs debugging information whenever
dwCurrentIteration is greater than dwMaxIteration. You can also control debugging
messages by using debug zones in the conditional statement. This is particularly
useful if you want to use the DEBUGMSG macro to examine code execution in a
module (that is, an executable file or a DLL) at varying levels without changing and
recompiling the source code each time. First, you must enable debug zones in your
executable file or DLL, and register a global DBGPARAM variable with the Debug
Message service to specify which zones are active. You can then specify the current
default zone programmatically or through registry settings on the development
workstation or the target device. It is also possible to control debug zones
dynamically for a module in Platform Builder via CE Debug Zones on the Target menu
or in the Target Control window.

TIP Bypassing debug zones

You can bypass debug zones in drivers and applications if you pass a Boolean variable to the
DEBUGMSG and RETAILMSG macros that you can set to TRUE or FALSE when you rebuild the
run-time image.

Zones Registration
To use debug zones, you must define a global DBGPARAM variable with three fields
that specify the module name, the names of the debug zones you want to register, and
a field for the current zone mask, as summarized in Table 4–2.

Lesson 1: Detecting Software-Related Errors 153

NOTE Debug zones

Windows Embedded CE supports a total of 16 named debug zones, yet not all have to be
defined if the module doesn’t require them. Each module uses a separate set of zone names
that should clearly reflect the purpose of each implemented zone.

The Dbgapi.h header file defines the DBGPARAM structure and debugging macros.
Because these macros use a predefined DBGPARAM variable named dpCurSettings, it
is important that you use the same name in your source code as well, as illustrated in
the following code snippet.

Table 4-2 DBGPARAM elements

Field Description Example

lpszName Defines the name of the module
with a maximum length of
32 characters.

TEXT("ModuleName")

rglpszZones Defines an array of 16 names for
the debug zones. Each name can
be up to 32 characters long.
Platform Builder displays this
information to the user when
selecting the active zones in the
module.

{

 TEXT("Init"),

 TEXT("Deinit"),

 TEXT("On"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Undefined"),

 TEXT("Failure"),

 TEXT("Warning"),

 TEXT("Error")

}

ulZoneMask The current zone mask used in the
DEBUGZONE macro to determine
the currently selected debug zone.

MASK_INIT | MASK_ON | MASK_ERROR

154 Chapter 4 Debugging and Testing the System

#include <DBGAPI.H>

// A macro to increase the readability of zone mask definitions

#define DEBUGMASK(n) (0x00000001<<n)

// Definition of zone masks supported in this module

#define MASK_INIT DEBUGMASK(0)

#define MASK_DEINIT DEBUGMASK(1)

#define MASK_ON DEBUGMASK(2)

#define MASK_FAILURE DEBUGMASK(13)

#define MASK_WARNING DEBUGMASK(14)

#define MASK_ERROR DEBUGMASK(15)

// Definition dpCurSettings variable with the initial debug zone state

// set to Failure, Warning, and Error.

DBGPARAM dpCurSettings =

{

 TEXT("ModuleName"), // Specify the actual module name for clarity!

 {

 TEXT("Init"), TEXT("Deinit"), TEXT("On"), TEXT("Undefined"),

 TEXT("Undefined"), TEXT("Undefined"), TEXT("Undefined"),

 TEXT("Undefined"), TEXT("Undefined"), TEXT("Undefined"),

 TEXT("Undefined"), TEXT("Undefined"), TEXT("Undefined"),

 TEXT("Failure"), TEXT("Warning"), TEXT("Error")

 },

 MASK_INIT | MASK_ON | MASK_ERROR

};

// Main entry point into DLL

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved

)

{

 if(ul_reason_for_call == DLL_PROCESS_ATTACH)

 {

// Register with the Debug Message service each time

 // the DLL is loaded into the address space of a process.

 DEBUGREGISTER((HMODULE)hModule);

 }

 return TRUE;

}

Zone Definitions

The sample code above registers six debug zones for the module that you can now use
in conjunction with conditional statements in debugging macros. The following line
of code shows one possible way to do this:

DEBUGMSG(dpCurSettings.ulZoneMask & (0x00000001<<(15)),

 (TEXT("Error Information\r\n")));

Lesson 1: Detecting Software-Related Errors 155

If the debug zone is currently set to MASK_ERROR, the conditional expression
evaluates to TRUE and DEBUGMSG sends the information to the debug output
stream. However, to improve the readability of your code, you should use the
DEBUGZONE macro defined in Dbgapi.h, as illustrated in the following code
snippet, to define flags for your zones. Among other things, this approach simplifies
the combination of debug zones through logical AND and OR operations.

#include <DBGAPI.H>

// Definition of zone flags: TRUE or FALSE according to selected debug zone.

#define ZONE_INIT DEBUGZONE(0)

#define ZONE_DEINIT DEBUGZONE(1)

#define ZONE_ON DEBUGZONE(2)

#define ZONE_FAILURE DEBUGZONE(13)

#define ZONE_WARNING DEBUGZONE(14)

#define ZONE_ERROR DEBUGZONE(15)

DEBUGMSG(ZONE_FAILURE, (TEXT("Failure debug zone enabled.\r\n")));

DEBUGMSG(ZONE_FAILURE && ZONE_ WARNING,

 (TEXT("Failure and Warning debug zones enabled.\r\n")));

DEBUGMSG(ZONE_FAILURE || ZONE_ ERROR,

 (TEXT("Failure or Error debug zone enabled.\r\n")));

Enabling and Disabling Debug Zones
The DBGPARAM field ulZoneMask is the key to setting the current debug zone for a
module. You can accomplish this programmatically in the module by changing the
ulZoneMask value of the global dpCurSettings variable directly. Another option is to
change the ulZoneMask value in the debugger at a breakpoint within the Watch
window. You can also control the debug zone through another application by calling
the SetDbgZone function. Another option available at run time is to use the Debug
Zones dialog box, illustrated in Figure 4–2, which you can display in Visual Studio
with Platform Builder via the CE Debug Zones command on the Target menu.

The Name list shows the modules running on the target device that support debug
zones. If the selected module is registered with the Debug Message service, you can
find the list of 16 zones displayed under Debug Zones. The names correspond to the
selected module’s dpCurSettings definition. You can select or deselect zones to
enable or disable them. By default, the zones defined in the dpCurSettings variable
are enabled and checked in the Debug Zones list. For modules not registered with the
Debug Message service, the Debug Zone list is deactivated and unavailable.

156 Chapter 4 Debugging and Testing the System

Figure 4-2 Setting debug zones in Platform Builder

Overriding Debug Zones at Startup
Windows Embedded CE enables the zones you specify in the dpCurSettings variable
when you start the application or load the DLL into a process. At this point, it is not
yet possible to change the debug zone unless you set a breakpoint and change the
ulZoneMask value in the Watch window. However, CE supports a more convenient
method through registry settings. To facilitate loading a module with different active
debug zones, you can create a REG_DWORD value with a name that corresponds to
the module name specified in the lpszName field of the dpCurSettings variable and
set it to the combined values of the debug zones you want to activate. You can
configure this value on the development workstation or the target device. It is
generally preferable to configure this value on the development workstation because
changing target device registry entries requires you to rebuild the run-time image,
whereas a modification of the registry entries on the development workstation only
requires you to restart the affected modules.

Table 4–3 illustrates the configuration for a sample module called ModuleName. Make
sure you replace this placeholder name with the actual name of your executable file or
DLL.

Lesson 1: Detecting Software-Related Errors 157

MORE INFO Pegasus registry key

The name Pegasus refers to the code name of the first Windows CE version that Microsoft
released for handheld personal computers and other consumer electronics in 1996.

Best Practices
When working with debug messages, keep in mind that heavy use of debug messages
slows down code execution. Perhaps even more important, the system serializes the
debug output operations, which can provide an unintentional thread synchronization
mechanism. For example, multiple threads running unsynchronized in release builds
might cause issues not noticeable in debug builds.

When working with debug messages and debug zones, consider the following best
practices:

Table 4-3 Startup registry parameter examples

Location Development Workstation Target Device

Registry Key HKEY_CURRENT_USER
\Pegasus\Zones

HKEY_LOCAL_MACHINE
\DebugZones

Entry Name ModuleName ModuleName

Type REG_DWORD REG_DWORD

Value 0x00000001 - 0x7FFFFFFF 0x00000001 - 0x7FFFFFFF

Comments The Debug Message system uses the target-side value for a
module only if the development workstation is unavailable or if
the development-side registry does not contain a value for the
module.

NOTE Enabling all debug zones

Windows Embedded CE uses the lower 16 bits of the REG_DWORD value
to define named debug zones for application debugging purposes. The
remaining bits are available to define unnamed debug zones, with the
exception of the highest bit, which is reserved for the kernel. Therefore,
you should not set a module’s debug zone value to 0xFFFFFFFF. The
maximum value is 0x7FFFFFFF, which enables all named and unnamed
debug zones.

158 Chapter 4 Debugging and Testing the System

■ Use Conditional statements Use debug macros with conditional statements
based on debug zones. Do not use DEBUGMSG(TRUE). Also avoid using retail
macros without conditional statements, such as RETAILMSG(TRUE), although
some model device driver (MDD)/platform dependent driver (PDD) drivers
must use this technique.

■ Exclude debugging code from release builds If you only use debug zones in
debug builds, include the global variable dpCurSettings and zone mask
definitions in #ifdef DEBUG #endif guards and restrict the use of debug zones
to debug macros (such as DEBUGMSG).

■ Use retail macros in release builds If you also want to use debug zones in
release builds, include the global variable dpCurSettings and zone mask
definitions in #ifndef SHIP_BUILD #endif guards and replace the call to
DEBUGREGISTER with a call to RETAILREGISTERZONES.

■ Clearly identify the module name If possible, set the dpCurSettings.lpszName
value to the module’s file name.

■ Limit verbosity by default Set the default zones for your drivers to
ZONE_ERROR and ZONE_WARNING only. When bringing up a new platform,
enable ZONE_INIT.

■ Restrict the error debug zone to unrecoverable issues Use ZONE_ERROR
only when your module or significant functionality fails due to incorrect
configuration or other issues. Use ZONE_WARNING for recoverable issues.

■ Eliminate all errors and warnings if possible Your module should be able to
load without any ZONE_ERROR or ZONE_WARNING messages.

Target Control Commands
The Target Control service provides access to a command shell for the debugger to
transfer files to the target device and debug applications. This target control shell,
displayed in Figure 4-3, is accessible from within Visual Studio with Platform Builder
via the Target Control option on the Target menu. However, it is important to keep in
mind that the target control shell is only available if the Platform Builder instance is
attached to a device through KITL.

Lesson 1: Detecting Software-Related Errors 159

Figure 4-3 The target control shell

Among other things, the target control shell enables you to perform the following
debugging actions:

■ Break into the Kernel Debugger (break command).

■ Send a memory dump to the debug output (dd command) or to a file (df
command).

■ Analyze memory usage for the kernel (mi kernel command) or the entire system
(mi full command).

■ List processes (gi proc command), threads (gi thrd command), and thread
priorities (tp command), as well as the modules loaded on the system (gi mod
command).

■ Launch processes (s command) and end processes (kp command).

■ Dump the processes heap (hp command).

■ Enable or disable the system profiler (prof command).

NOTE Target control commands

For a complete list of target control commands, see the section “Target Control Debugging
Commands” in the Windows Embedded CE 6.0 Documentation, available on the Microsoft
MSDN® Web site at http://msdn2.microsoft.com/en-us/library/aa936032.aspx.

Debugger Extension Commands (CEDebugX)
In addition to the regular debugger commands, the Target Control service provides
the debugger with a debugger commands extension (CEDebugX) to increase the
efficiency of kernel and application debugging. This extension provides additional
features to detect memory leaks and deadlocks and diagnose the overall health of the

160 Chapter 4 Debugging and Testing the System

system. The additional commands are accessible through the target control shell and
start with an exclamation point (!).

To use CEDebugX, you need to break into the Kernel Debugger by using the break
command in the target control shell or the Break All command on the Target menu in
Visual Studio. Among other things, you can then enter a !diagnose all command to
identify the potential reason for a failure, such as heap corruption, deadlocks, or
memory starvation. On a healthy system, the CEDebugX should detect no any issues,
as illustrated in Figure 4–4.

Figure 4-4 Diagnosing a run-time image with CEDebugX

Lesson 1: Detecting Software-Related Errors 161

The !diagnose all command runs the following diagnostics:

■ Heap Diagnoses all the heap objects of all processes on the system to identify
potential content corruption.

■ Exception Diagnoses an exception that occurs on the system and is able to
provide details on the exception, such as process and thread ID, and PC address
at the exception time.

■ Memory Diagnoses the system memory to identify potential memory
corruptions and low memory conditions.

■ Deadlock Diagnoses the thread states and system objects (see Chapter 3 for
more details on thread synchronization). It can provide a list of system objects
and thread IDs that generated the deadlock.

■ Starvation Diagnoses threads and system objects to identify potential thread
starvation. Starvation occurs when a thread is never scheduled on the system by
the scheduler because the scheduler is busy with higher-priority threads.

Advanced Debugger Tools
The target control shell and CEDebugX commands enable you to perform a thorough
analysis of a running system or a CE dump file (if you select the CE Dump File Reader
as the debugger to perform postmortem debugging), yet you are not restricted to the
command-line interface. Platform Builder includes several graphical tools with a
dedicated purpose to increase your debugging efficiency. You can access these
advanced debugger tools in Visual Studio via the Debug menu when you open the
Windows submenu.

The Platform Builder IDE includes the following advanced debugger tools:

■ Breakpoints Lists the breakpoints enabled on the system and provides access
to the breakpoint properties.

■ Watch Provides read and write access to local and global variables.

■ Autos Provides access to variables similar to the Watch window, except that the
debugger creates this list of variables dynamically, while the Watch window lists
all manually added variables whether they are accessible or not. The Autos
window is useful if you want to check the parameter values passed to a function.

■ Call Stack Accessible only when the system is in a break state (code execution
has halted on a breakpoint). This window provides a list of all processes enabled
on the system and a list of hosted threads.

162 Chapter 4 Debugging and Testing the System

■ Threads Provides a list of the threads running in the processes on the system.
This information is dynamically retrieved and can be updated at any time.

■ Modules Lists the modules loaded and unloaded on the system and provides
the memory address where those modules are loaded. This feature is useful for
identifying whether a driver DLL is actually loaded or not.

■ Processes Similar to the Threads window, this window provides a list of the
processes running on the system. Among other things, you can terminate
processes if required.

■ Memory Provides direct access to device memory. You can use memory
addresses or variable names to locate the desired memory content.

■ Disassembly Reveals the assembly code of the current code line executed on
the system.

■ Registers Provides access to the CPU register values when running a specific
line of code.

■ Advanced Memory Can be used to search the device memory, move portions
of memory to different sections, and fill memory ranges by using content
patterns.

■ List Nearest Symbols Determines a specific memory address for the nearest
symbols available in the binaries. It also provides the complete path to the file
containing the symbol. This tool is useful to locate the name of a function that
generated an exception.

CAUTION Memory corruption

The Memory and Advanced Memory tools can modify memory content. Using these tools incor-
rectly can cause system failures and damage the operating system on the target device.

Application Verifier Tool
Another useful tool to identify potential application compatibility and stability issues
and necessary source code–level fixes is the Application Verifier tool, included in the
CETK. This tool can attach to an application or a DLL to diagnose problems that are
otherwise difficult to track on standalone devices. The Application Verifier tool does
not require a device connection to a development workstation and can be launched at
system startup to check and validate drivers and system applications. You can also
start this tool from the CETK user interface or manually on the target device. If you

Lesson 1: Detecting Software-Related Errors 163

want to use the Application Verifier tool outside of the CETK, you should use the
Getappverif_cetk.bat file to copy all the required files into the release directory.

NOTE Application Verifier tool documentation

For detailed information about the Application Verifier tool, including how to use shim extension
DLLs to run custom test code or change the behavior of functions during application testing, see
the section “Application Verifier Tool” in the Windows Embedded CE 6.0 Documentation, avail-
able on the Microsoft MSDN Web si te at http://msdn2.microsof t .com/en-us/ l ibrary/
aa934321.aspx.

CeLog Event Tracking and Processing
Windows Embedded CE includes an extensible event-tracking system that you can
include in a run-time image to diagnose performance problems. The CeLog event-
tracking system logs a set of predefined kernel and coredll events related to mutexes,
events, memory allocation, and other kernel objects. The extensible architecture of
the CeLog event-tracking system also enables you to implement custom filters to track
user-defined events. For platforms connected to a development workstation through
KITL, the CeLog event-tracking system can selectively log events based on zones
specified in the ZoneCE registry entry, as summarized in Table 4–4.

By using the CeLog event-tracking system, you can collect data, which CeLog stores in
a buffer in RAM on the target device. Performance tools, such as Remote Kernel
Tracker and Readlog, can then process the collected data. It is also possible to flush
the data periodically to a file by using the CELogFlush tool.

Table 4-4 CeLog registry parameters for event logging zones

Location HKEY_LOCAL_MACHINE\System\CELog

Registry Entry ZoneCE

Entry Type REG_DWORD

Value <Zone IDs>

Description By default, all zones are logged. For a list of all possible zone ID
values, see the section “CELog Zones” in the Windows
Embedded CE 6.0 Documentation, available on the Microsoft
MSDN Web site at http://msdn2.microsoft.com/en-us/library
/aa909194.aspx.

164 Chapter 4 Debugging and Testing the System

NOTE CELog and ship builds

You should not include the CeLog event-tracking system in final builds to avoid performance
and memory penalties due to CeLog activities, and to reduce the attack surface through which
a malicious user could try to compromise the system.

Remote Kernel Tracker
The Remote Kernel Tracker tool enables you to monitor system activities on a target
device based on processes and threads. This tool can display information from the
target device in real time through KITL, yet it is also possible to use Remote Kernel
Tracker offline based on CeLog data files. You can find more information about the
Remote Kernel Tracker tool in Chapter 3, “Performing System Programming.”

Figure 4–5 shows Kernel Tracker on a target device collecting information about
thread activities.

Figure 4-5 Thread information in Kernel Tracker

CeLogFlush Tool
To create CeLog data files, use the CeLogFlush tool to save the CeLog event data
buffered in RAM into a .clg file. This file can be located in the RAM file system,
persistent storage, or the release file system on a development workstation. To

Lesson 1: Detecting Software-Related Errors 165

minimize data loss due to buffer overruns, you can specify a larger RAM buffer and
increase the frequency at which CeLog flushes the buffer. You can optimize the
performance if you keep the file open to avoid repeated file open and close operations
and store the file in the RAM file system instead of a slower persistent storage
medium.

NOTE CELogFlush configuration

For detailed information about the CeLogFlush tool, including how to configure this tool through
registry settings, see the section “CeLogFlush Registry Settings” in the Windows Embedded CE 6.0
Documentation, available on the Microsoft MSDN Web site at http://msdn2.microsoft.com/en-us
/library/aa935267.aspx.

Readlog Tool
In addition to the graphical Remote Kernel Tracker application, you can process
CELog data files by using the Readlog tool, located in the %_WINCEROOT%\Public
\Common\Oak\Bin\i386 folder. Readlog is a command-line tool to process and
display information not exposed in Remote Kernel Tracker, such as debug messages
and boot events. It is often useful to analyze system activities in Remote Kernel
Tracker first and then focus on an identified process or thread with the Readlog tool.
The raw data that the CeLogFlush tool writes into the .clg file is ordered by zones to
facilitate locating and extracting specific information. You can also filter the data and
extend filtering capabilities based on extension DLLs to process custom data
captured through the custom events collector.

One of the most useful Readlog scenarios is to replace thread start addresses (the
functions passed to the CreateThread call) in CeLog data files with the names of the
actual thread functions to facilitate system analysis in Remote Kernel Tracker. To
accomplish this task, you must start Readlog with the -fixthreads parameter (readlog
-fixthreads). Readlog looks up the symbol .map files in the release directory to
identify the thread functions based on the start addresses and generates new logs
with the corresponding references.

Figure 4–6 shows CeLog data in Remote Kernel Tracker, captured through the CeLog
event-tracking system, flushed to a .clg file with the CeLogFlush tool, and prepared
for a more user-friendly display of the information by using the Readlog application
with the -fixthreads parameter.

166 Chapter 4 Debugging and Testing the System

Figure 4-6 A CeLog data file prepared with readlog -fixthreads and opened in Remote Kernel
Tracker

NOTE Improving reference naming matching

The CeLog event-tracking system can take advantage of the kernel profiler to look up thread
function names based on start addresses when capturing CreateThread events, if you explicitly
enable the kernel profiler and add profiling symbols to the run-time image by rebuilding the
image with the IMGPROFILER environment variable set. However, CeLog can only look up the
profiling symbols built into the run-time image. Symbols of applications developed based on a
Software Development Kit (SDK) are generally unavailable to the CeLog event-tracking system.

Lesson Summary
Debugging an operating system and applications requires familiarity with both the
CE system and the debugging tools included in Platform Builder and CETK. The most
important debugging tools are the system debugger, debug message feature, and CE
target control shell. The system debugger enables you to set breakpoints and step
through kernel and application code, while the debug message feature provides the
option to analyze system components and applications without interrupting code
execution. A variety of debug and retail macros are available to output debugging

Lesson 1: Detecting Software-Related Errors 167

information from target devices with or without a display component. Because
systems and applications can potentially generate a large number of debug messages,
you should use debug zones to control the output of debugging information. The key
advantage of debug zones is that you can change the debug information verbosity
dynamically without having to rebuild the run-time image. The target control shell, on
the other hand, enables you to send commands to the target device, such as a break
command followed by a !diagnose all command to break into the debugger and
perform a CEDebugX check on the overall system health, including memory leaks,
exceptions, and deadlocks.

Apart from these core debugging tools, you can use typical CE configuration and
troubleshooting tools, such as the Application Verifier tool, to identify potential
application compatibility and stability issues, and Remote Kernel Tracker to analyze
processes, threads, and system performance. Remote Kernel Tracker relies on the
CeLog event-tracking system, which typically maintains logged data in memory on
the target device; you can also flush this data to a file by using the CeLogFlush tool.
If symbol files are available for the modules that you want to analyze, you can use the
Readlog tool to replace the thread start addresses with the actual function names and
generate new CeLog data files for more convenient offline analysis in Remote Kernel
Tracker.

168 Chapter 4 Debugging and Testing the System

Lesson 2: Configuring the Run-Time Image
to Enable Debugging

The debugging features of Windows Embedded CE rely on development workstation
components and the target device, and require specific settings and hardware
support. Without a connection between the development workstation and the target
device, debug information and other requests cannot be exchanged. If this
communication link breaks—for example, because you stop the debugger on the
development workstation without first unloading the target-side debugging stub—the
run-time image might stop responding to user input while waiting for the debugger to
resume code execution after an exception occurred.

After this lesson, you will be able to:

■ Enable the Kernel Debugger for a run-time image.

■ Identify the KITL requirements.

■ Use the Kernel Debugger in a debugging context.

Estimated lesson time: 20 minutes.

Enabling the Kernel Debugger
As discussed in Lesson 1, the development environment for Windows Embedded CE
6.0 includes a Kernel Debugger that enables developers to step through and interact
with code running on a CE target device. This debugger requires you to set kernel
options and a communication layer between the target device and the development
computer.

OS Design Settings
To enable an OS design for debugging, you must unset the environment variables
IMGNODEBUGGER and IMGNOKITL so that Platform Builder includes the KdStub
library and enables the KITL communication layer in the Board Support Package
(BSP) when building the run-time image. Platform Builder provides a convenient
method to accomplish this task. In Visual Studio, right-click the OS design project
and select Properties to display the OS Design property pages dialog box, switch to
the Build Options pane, and then select the Enable Kernel Debugger and Enable
KITL check boxes. Chapter 1, “Customizing the Operating System Design,” discusses
the OS Design property pages dialog box in more detail.

Lesson 2: Configuring the Run-Time Image to Enable Debugging 169

Selecting a Debugger
Having enabled KdStub and KITL for a run-time image, you can select a debugger to
analyze the system on the target device in the communication parameters for your
target device. To configure these parameters, display the Target Device Connectivity
Options dialog box in Visual Studio by opening the Target menu and selecting
Connectivity Options, as explained in Chapter 2, “Building and Deploying a Run-
Time Image.”

By default, no debugger is selected in the connectivity options. You have the following
debugger choices:

■ KdStub This is the software debugger for the kernel and applications to debug
system components, drivers, and applications running on a target device.
KdStub requires KITL to communicate with Platform Builder.

■ CE Dump File Reader Platform Builder provides you with an option to capture
dump files, which you can then open by using the CE dump-file reader. Dump
files enable you to study the state of a system at a particular point in time and are
useful as references.

■ Sample Device Emulator eXDI 2 Driver KdStub cannot debug routines that
the system runs prior to loading the kernel, nor can it debug interrupt service
routines (ISRs), because this debugging library relies on software breakpoints.
For hardware-assisted debugging, Platform Builder includes a sample eXDI
driver that you can use in conjunction with a joint test action group (JTAG)
probe. The JTAG probe enables you to set hardware breakpoints handled by the
processor.

NOTE Hardware-assisted debugging

For detailed information about hardware-assisted debugging, see the section “Hardware-
assisted Debugging” in the Windows Embedded CE 6.0 Documentation, available on the
Microsoft MSDN Web site at http://msdn2.microsoft.com/en-us/library/aa935824.aspx.

KITL
As illustrated in Figure 4–1 at the beginning of this chapter, KITL is an essential
communication layer between the development computer and the target device and
must be enabled for Kernel Debugger support. As the name implies, KITL is
completely hardware independent and works over network connections, serial
cables, Universal Serial Bus (USB), or any other supported communication

170 Chapter 4 Debugging and Testing the System

mechanism, such as Direct Memory Access (DMA). The only requirement is that both
sides (development computer and target device) support and use the same interface.
The most common and fastest KITL interface for the device emulator is DMA, as
illustrated in Figure 4–7. For target devices with a supported Ethernet chip, it is
typically best to use the network interface.

Figure 4-7 Configuring the KITL communication interface

KITL supports the following two methods of operation:

■ Active mode By default, Platform Builder configures KITL to connect to the
development computer during the start process. This setting is most useful for
kernel and application debugging during the software-development cycle.

■ Passive mode By clearing the check box Enable KITL on Device Boot, you can
configure KITL for passive mode, meaning Windows Embedded CE initializes
the KITL interface, but KITL does not establish a connection during the startup
process. If an exception occurs, KITL makes an attempt to establish a connection

Lesson 2: Configuring the Run-Time Image to Enable Debugging 171

to the development computer so that you can perform JIT debugging. Passive
mode is most useful when working with mobile devices that do not have a
physical connection to the development computer at startup.

NOTE KITL modes and boot arguments

The Enable KITL on Device Boot setting is a boot argument (BootArgs) that Platform Builder
configures for the boot loader. For more information about boot loaders and their advantages
during the BSP development process, see the section “Boot Loaders” in the Windows Embedded
CE 6.0 Documentation, available on the Microsoft MSDN Web site at http://msdn2.microsoft.com
/en-us/library/aa917791.aspx.

Debugging a Target Device
It is important to keep in mind that development-side and target-side debugger
components run independently of each other. For example, it is possible to run the
Kernel Debugger in Visual Studio 2005 with Platform Builder without having an
active target device. If you open the Debug menu and click Start or press the F5 key,
the Kernel Debugger starts and informs you in the Output window that it is waiting
for a connection to the target device. On the other hand, if you start a debugging-
enabled run-time image without an active KITL connection to a debugger and an
exception occurs, the run-time image appears to hang because the system halts,
waiting for control requests from the debugger, as mentioned earlier in this chapter.
For this reason, the debugger typically starts automatically when you attach to a
debugging-enabled target device. Instead of pressing F5 to start a debugging session,
use Attach Device on the Target menu.

Enabling and Managing Breakpoints
The debugging features of Platform Builder provide most of the functionality also
found in other debuggers for Windows desktop applications. You can set
breakpoints, step through the code line-by-line, and use the Watch window to view
and change variable values and object properties, as illustrated in Figure 4–8. Keep in
mind, however, that the ability to use breakpoints depends on the existence of the
KdStub library in the run-time image.

172 Chapter 4 Debugging and Testing the System

Figure 4-8 Debugging a Hello World application

To set a breakpoint, use the Toggle Breakpoint option on the Debug menu in Visual
Studio. Alternatively, you can press F9 to set a breakpoint at the current line or click
the left margin area of the code line. According to your selection, Platform Builder
indicates the breakpoint with a red dot or a red circle, depending on whether the
debugger can instantiate the breakpoint or not. The red circle indicates an un-
instantiated breakpoint. Un-instantiated breakpoints occur if the Visual Studio
instance is not linked to the target code, the breakpoint is set but has not yet been
loaded, the debugger is not enabled, or if the debugger is running but code execution
has not yet halted. If you set a breakpoint while the debugger is running, then the
device must break into the debugger first before the debugger can instantiate the
breakpoint.

You have the following options to manage breakpoints in Visual Studio with Platform
Builder:

■ Source code, Call Stack, and Disassembly windows You can set, remove,
enable, or disable a breakpoint by either pressing F9 and selecting Toggle

Lesson 2: Configuring the Run-Time Image to Enable Debugging 173

Breakpoint from the Debug menu or selecting Insert/Remove Breakpoint from
the context menu.

■ New Breakpoint dialog box You can display this dialog box via the submenus
available under New Breakpoint on the Debug menu. The New Breakpoint
dialog box enables you to set breakpoints by location and conditions. The
debugger stops at a conditional breakpoint only if the specified condition
evaluates to TRUE, such as when a loop counter or other variable has a specific
value.

■ Breakpoints window You can display the Breakpoints window by clicking
Breakpoints under the Windows submenu on the Debug menu, or by pressing
Alt+F9. The Breakpoints window lists all set breakpoints and enables you to
configure breakpoint properties. For example, instead of using the New
Breakpoint dialog box, which requires you to specify location information
manually, you can set the desired breakpoint directly in the source code and
then display the properties of this breakpoint in the Breakpoints window to
define conditional parameters.

TIP Too many breakpoints

Use breakpoints sparingly. Setting too many breakpoints and constantly selecting Resume
impacts debugging efficiency and makes it hard to focus on one aspect of the system at a time.
Consider disabling and re-enabling breakpoints as necessary.

Breakpoint Restrictions
When configuring the properties of a breakpoint in the New Breakpoint dialog box or
the Breakpoints window, you may notice a Hardware button, which you can use to
configure the breakpoint as a hardware breakpoint or software breakpoint. You
cannot use software breakpoints in OAL code or interrupt handlers, because the
breakpoint must not completely halt the execution of the system. Among other
system processes, the KITL connection must remain active, because it is the only way
to communicate with the debugger on the development workstation. KITL interfaces
with the OAL and uses the kernel’s interrupt-based communication mechanisms. If
you set a breakpoint in an interrupt handler function, then the system will not be able
to communicate any longer when the breakpoint is reached because interrupt
handling is a single-threaded and non-interruptible function.

If you must debug interrupt handlers, you can use debug messages or hardware
breakpoints. However, hardware breakpoints require an eXDI-compliant debugger

174 Chapter 4 Debugging and Testing the System

(such as JTAG Probe) to register the interrupt in the processor’s debug register.
Typically, only one hardware debugger can be enabled on a processor at a time,
although JTAG can manage multiple debuggers. You cannot use the KdStub library
for hardware-assisted debugging.

 To configure a hardware breakpoint, follow these steps:

1. Open the Breakpoint window by opening the Debug menu and then clicking
Breakpoint.

2. Select the breakpoint in the breakpoint list and then right-click it.

3. Click Breakpoint Properties to display the Breakpoint Properties dialog box and
then click the Hardware button.

4. Select the Hardware radio button and then click OK twice to close all dialog
boxes.

Figure 4-9 Setting a hardware breakpoint

Lesson Summary
Enabling the debugger is a straightforward configuration process in the Platform
Builder IDE if you include KITL and debugger libraries in the run-time image. You can
then display the Target Device Connectivity Options dialog box and select an
appropriate transport and debugger. Typically, the transport is DMA or Ethernet, but
you can also use a USB or serial cable to connect the development workstation to the
target device.

Lesson 2: Configuring the Run-Time Image to Enable Debugging 175

Platform Builder provides most of the debugging features also found in other
debuggers for Windows desktop applications. You can set breakpoints, step through
the code line-by-line, and use the Watch window to view and change variable values
and object properties. Platform Builder also supports conditional breakpoints to halt
code execution according to specified criteria. The debugger of choice for software
debugging is KdStub, although you can also use an eXDI driver with Platform Builder
for hardware-assisted debugging based on a JTAG probe or other hardware debugger.
Hardware-assisted debugging enables you to analyze system routines that run prior to
loading the kernel, OAL components, and interrupt handler functions where you
cannot use software breakpoints.

176 Chapter 4 Debugging and Testing the System

Lesson 3: Testing a System by using the CETK
Automated software testing is a key to improving product quality while lowering
development and support costs. This is particularly important if you create a custom
BSP for a target device, added new device drivers, and implemented custom OAL
code. Before releasing a new series of the system to production, it is vital to perform
functional testing, unit testing, stress testing, and other types of testing to validate
each part of the system and ensure that the target device operates reliably under
normal conditions. It is generally much more expensive to fix defects after a new
product reaches the market than to create testing tools and scripts that simulate users
operating the target device and fix any defects while the system is still under
development. System testing should not be an afterthought. To perform system
testing efficiently throughout the software development cycle, you can use the CETK.

After this lesson, you will be able to:

■ Describe typical usage scenarios for CETK test tools.

■ Create user-defined CETK tests.

■ Run CETK tests on a target device.

Estimated lesson time: 30 minutes.

Windows Embedded CE Test Kit Overview
The CETK is a separate test application included with Platform Builder for Windows
Embedded CE to validate the stability of applications and device drivers based on a
series of automated tests organized in a CE test catalog. The CETK includes numerous
default tests for several driver categories of peripheral devices and you can also create
custom tests for your specific needs.

NOTE CETK tests

For a complete list of default tests included in the CETK, see the section “CETK Tests” in the Win-
dows Embedded CE 6.0 Documentation, available on the Microsoft MSDN Web site at http://
msdn2.microsoft.com/en-us/library/aa917791.aspx.

CETK Architecture

As illustrated in Figure 4–10, the CETK application is a client/server solution with
components running on the development computer and on the target device. The

Lesson 3: Testing a System by using the CETK 177

development computer runs the workstation server application (CETest.exe) while
the target device runs the client-side application (Clientside.exe), test engine
(Tux.exe), and test results logger (Kato.exe). Among other things, this architecture
enables you to run concurrent tests on multiple different devices from the same
development workstation. Workstation server and client-side applications can
communicate through KITL, ActiveSync® or a Windows Sockets (Winsock)
connection.

Figure 4-10 The CETK client/server architecture

The CETK application includes the following components:

■ Development workstation server CETest.exe provides the graphical user
interface (GUI) to run and manage CETK tests. This application also enables
you to configure server settings and connection parameters, as well as connect to
a target device. Having established a device connection, the workstation server
can automatically download and start the client-side application, submits test
requests, and compile test results based on captured logs in real-time for display.

■ Client-side application Clientside.exe interfaces with the workstation server
application to control the test engine and return test results to the server
application. If Clientside.exe is unavailable on the target device, the workstation
server cannot establish a communication stream to the target device.

■ Test engine CETK tests are implemented in DLLs that Tux.exe loads and runs
on the target device. Typically, you start the test engine remotely through

Workstation Server
(CETest.exe)

Development
Workstation

Clientside.exe

Tux.exe

Tux Tests

Target Device

Kato.exe

Logs

178 Chapter 4 Debugging and Testing the System

workstation server and client-side application, yet it is also possible to start
Tux.exe locally, in stand-alone fashion with no workstation server requirement.

■ Test results logger Kato.exe tracks the results of the CETK tests in log files. Tux
DLLs can use this logger to provide additional information about whether a test
succeeded or failed and have their output routed to multiple user-defined output
devices. Because all CETK tests use the same logger and format, it is possible to
use a default file parser or implement a custom log file parser for automatic
result processing according to specific requirements.

NOTE CETK for managed code

A managed version of the CETK is available to validate native and managed code. For details
about the managed version, see the section “Tux.Net Test Harness” in the Windows Embedded
C E 6 . 0 Do cu men ta t i on , a va i l ab l e on th e M i c ro so f t MS D N Web s i t e a t h t t p : / /
msdn2.microsoft.com/en-us/library/aa934705.aspx.

Using the CETK
You can run CETK tests in a variety of ways according to the connectivity options
supported on the target device. You can use KITL, Microsoft ActiveSync, or a TCP/IP
connection to connect to the target device, download the target-side CETK
components, run the desired tests, and view the results in the graphical user interface
on the development workstation. On the other hand, if your target device does not
support these connectivity options, you must run the tests locally with appropriate
command-line options.

Using the CETK Workstation Server Application
To work with the workstation server application, click Windows Embedded CE 6.0
Test Kit in the Windows Embedded CE 6.0 program group on your development
computer, open the Connection menu and select the Start Client command. You can
then configure the transport by clicking the Settings button. If the target device is
switched on and connected to your development workstation, click Connect, select
the desired target device, and then click OK to establish the communication channel
and deploy the required binaries. The CETK application is now ready to run tests on
the target device.

As illustrated in Figure 4–11, the CETK application automatically detects the device
drivers available on the target and provides a convenient method to run the tests. One
way is to click the device name under Start/Stop Test on the Tests menu, which causes

Lesson 3: Testing a System by using the CETK 179

CETK to test all detected components. Another way is to right-click the Test Catalog
node and select the Start Tests command. You can also expand the individual
containers, right-click an individual device test, and click Quick Start to test only a
single component. The workstation server application also provides access to
Application Verifier, CPU Monitor, Resource Consume, and Windows Embedded CE
Stress tool when you right-click the device node and open the Tools submenu.

Figure 4-11 The graphical user interface of the CETK application

Create a Test Suite
Apart from running all tests at once or quick tests individually, you can create test
suites that include a custom series of tests that you want to perform repeatedly
throughout the software development cycle. To create a new test suite, use the Test
Suite Editor, available in the workstation server application on the Tests menu. The
Test Suite Editor is a graphical tool to select the tests that belong to a suite
conveniently. You can export test suite definitions in the form of Test Kit Suite (.tks)
files and import these files on additional development computers to ensure that all
workstation server applications perform the same set of tests. These .tks files can also
provide the basis for test definition archives.

Customizing Default Tests
The graphical user interface also enables you to customize the command lines that
the workstation server application sends to the test engine (Tux.exe) to perform the
tests. To modify the parameters of a test, right-click the test in the Test Catalog and

180 Chapter 4 Debugging and Testing the System

select the Edit Command Line option. For example, the Storage Device Block Driver
Benchmark Test analyzes the performance of a storage device by reading and writing
data to every sector on the device. This implies that all existing data on the storage
device will be destroyed. To protect you from accidental data loss, the Storage Device
Block Driver Benchmark Test is skipped by default. To run the Storage Device Block
Driver Benchmark Test successfully, you must edit the command line and explicitly
add a special parameter called -zorch.

The supported command-line parameters depend on each individual CETK test
implementation. Tests might support or require a variety of configuration parameters,
such as an index number to identify the device driver to test, or additional
information that must be provided to run the test.

NOTE Command-line parameters for CETK tests

For a complete list of default CETK tests with links to additional information, such as command-
line parameters, see the section “CETK Tests” in the Windows Embedded CE 6.0 Documentation,
available on the Microsoft MSDN Web site at http://msdn2.microsoft.com/en-us/library/
ms893193.aspx.

Running Clientside.exe Manually
If you have included the Windows Embedded CE Test Kit catalog item in your run-
time image, downloaded the CETK components with the workstation server
application, or exported the components from your development workstation to the
target device by using the File Viewer remote tool, you can start Clientside.exe on the
target device and establish a connection to a workstation server manually. If your
target device does not provide the Run dialog box for this purpose, open the Target
menu in the Platform Builder IDE, select Run Programs, select Clientside.exe, and
then select Run.

Clientside.exe supports the following command-line parameters that you can specify
to connect to a specific workstation server application, detect installed drivers, and
run tests automatically:

Clientside.exe [/i=<Server IP Address> | /n=<Server Name>] [/p=<Server Port Number>] [/a]

[/s] [/d] [/x]

It is important to note that you can define these parameters also in a Wcetk.txt file or
in the HKEY_LOCAL_MACHINE/Software/Microsoft/CETT registry key on the
target device so that you can start Clientside.exe without command-line parameters.

Lesson 3: Testing a System by using the CETK 181

In this case, Clientside.exe searches for Wcetk.txt in the root directory, then in the
Windows directory on the target device, and then in the release directory on the
development workstation. If Wcetk.txt does not exist in any of these locations, it
checks the CETT registry key. Table 4–5 summarizes the Clientside.exe parameters.

Table 4-5 Clientside.exe start parameters

Command Line Wcetk.txt CETT
Registry Key

Description

/n SERVERNAME ServerName
(REG_SZ)

Specifies the host
server name. Cannot
be used together with
/i and requires
Domain Name
System (DNS) for
name resolution.

/i SERVERIP ServerIP
(REG_SZ)

Specifies the host IP
address. Cannot be
used together with /n.

/p PORTNUMBER PortNumber
(REG_DWORD)

Specifies the server
port number that can
be configured from
the workstation
server interface.

/a AUTORUN Autorun
(REG_SZ)

When set to one (1),
the device
automatically starts
the test after the
connection is
established.

/s DEFAULTSUITE DefaultSuite
(REG_SZ)

Specifies the name of
the default test suite
to run.

182 Chapter 4 Debugging and Testing the System

Running CETK Tests in Standalone Mode
Clientside.exe connects to CETest.exe on the developer workstation, yet it is also
possible to run CETK tests without a connection, which is particularly useful for
devices that provide no connectivity possibilities. If you include the Windows
Embedded CE Test Kit catalog item in the run-time image, you can start the test
engine (Tux.exe) directly, which implicitly starts the Kato logging engine (Kato.exe)
to track the test results in log files. For example, to perform mouse tests
(mousetest.dll) and track the results in a file called test_results.log, you can use the
following command line:

Tux.exe -o -d mousetest -f test_results.log

NOTE Tux command-line parameters

For a complete list of Tux.exe command-line parameters, see the section “Tux Command-Line
Parameters” in the Windows Embedded CE 6.0 Documentation, available on the Microsoft
MSDN Web site at http://msdn2.microsoft.com/en-us/library/aa934656.aspx.

Creating a Custom CETK Test Solution
The CETK includes a large number of tests, yet the default tests cannot cover all
testing requirements, especially if you added your own custom device drivers to a BSP.
To provide you with an option to implement user-defined tests for your custom
drivers, the CETK relies on the Tux framework. Platform Builder includes a WCE

/x AUTOEXIT Autoexit
(REG_SZ)

When set to one (1),
the application
automatically exits
when the tests are
completed.

/d DRIVERDETECT DriverDetect
(REG_SZ)

When set to zero (0),
the detection of
devices drivers is
disabled.

Table 4-5 Clientside.exe start parameters (Continued)

Command Line Wcetk.txt CETT
Registry Key

Description

Lesson 3: Testing a System by using the CETK 183

TUX DLL template to create a skeleton Tux module with a few mouse clicks. When
implementing the logic to exercise your driver, you might find it useful to check out
the source code of existing test implementations. The CETK includes source code,
which you can install as part of the Windows Embedded CE Shared Source in the
S e t u p w iz a rd fo r W in d ow s Em b e d d e d CE . T h e d e f au l t l oc a t io n i s
%_WINCEROOT%\Private\Test.

Creating a Custom Tux Module

To create a custom test library that is compliant with the Tux framework, start the
Windows Embedded CE Subproject Wizard by adding a subproject to the OS design
of your run-time image and select the WCE TUX DLL template. This causes the Tux
wizard to create a skeleton that you can customize according to your driver
requirements.

You must edit the following files in the subproject to customize the skeleton Tux
module:

■ Header file Ft.h Defines the TUX Function Table (TFT), including a function
table header and function table entries. The function table entries associate test
IDs with the functions that contain the test logic.

■ Source code file Test.cpp Contains the test functions. The skeleton Tux
module includes a single TestProc function that you can use as reference to add
custom tests to the Tux DLL. You can replace the sample code to load and
exercise your custom driver, log activities through Kato, and return an
appropriate status code back to the Tux test engine when the tests are
completed.

Defining a Custom Test in the CETK Test Application
The skeleton Tux module is fully functional, so you can compile the solution and
build the run-time image even without code modifications. To run the new test
function on a target device, you must configure a user-defined test in the CETK
workstation server application. For this purpose, CETK includes a User-Defined Test
Wizard, which you can start by clicking the User Defined command on the Tests
menu. Figure 4–12 shows the User-Defined Test Wizard with configuration
parameters to run a skeleton Tux module.

184 Chapter 4 Debugging and Testing the System

Figure 4-12 Configuring a custom test in the User-Defined Test Wizard

Debugging a Custom Test
Because Tux tests rely on code and logic implemented in Tux DLLs, it might be
necessary to debug the test code. One issue worth mentioning is that you can set
breakpoints in your test routines, but when code execution halts on those breakpoints,
you lose the connection between the client-side application (Clientside.exe) and the
workstation server application (CETest.exe). Consider using debug messages instead of
breakpoints. If you must use breakpoints for thorough debugging, run Tux.exe directly
on the target device in standalone mode, as mentioned earlier in this lesson. You can
display the required command line in the workstation server application when you
right-click the test and select Edit Command Line.

Analyzing CETK Test Results
CETK tests should use Kato to log test results, as demonstrated in the skeleton Tux
module:

g_pKato->Log(LOG_COMMENT, TEXT("This test is not yet implemented."));

The workstation server application retrieves these logs automatically through
Clientside.exe and stores them on the development workstation.You can also access
these log files through other tools. For example, if you are using CETK in stand-alone
fashion, you can import the log files to the development workstation by using the File
Viewer remote tool.

Lesson 3: Testing a System by using the CETK 185

The CETK includes a general CETK parser (Cetkpar.exe) located in the C:\Program
Files\Microsoft Platform Builder\6.00\Cepb\Wcetk folder for convenient viewing of
imported log files, as shown in Figure 4–13. Typically, you start this parser by right-
clicking a completed test in the workstation server application and selecting View
Results, yet you can also start Cetkpar.exe directly. Some tests, particularly performance
tests based on PerfLog.dll, can also be parsed into comma-separated values (CSV)
format and opened in a spreadsheet to summarize the performance data. The CETK
includes a PerfToCsv parser tool for this purpose, and you can develop custom parsers
for special analysis scenarios. Kato log files use a plain text format.

Figure 4-13 Analyzing CETK test results

Lesson Summary
The Windows Embedded CE Test Kit is an extensible tool that enables you to test
drivers and applications on a target device in connected mode and in standalone
mode. Running the CETK tools in standalone mode is useful if the target device does
not support connectivity over KITL, ActiveSync, or TCP/IP. Most typically, developers
use the CETK to test device drivers added to the BSP of a target device.

The CETK relies on the Tux test engine, which provides a common framework for all
test DLLs. The Tux DLLs contain the actual testing logic and run on the target device
to load and exercise the driver. Tux DLLs also interface with Kato to track test results
in log files, which you can access directly in the CETK test application or process in
separate tools, such as custom parsers and spreadsheets.

186 Chapter 4 Debugging and Testing the System

Lesson 4: Testing the Boot Loader
The general task of a boot loader is to load the kernel into memory and then call the
OS startup routine after powering up the device. On Windows Embedded CE
specifically, the boot loader is part of the BSP and in charge of initializing the core
hardware platform, downloading the run-time image, and starting the kernel. Even if
you do not plan to ship a boot loader in your final product and directly bootstrap the
run-time image, you might find a boot loader helpful during the development cycle.
Among other things, a boot loader can help to simplify run-time image deployment
complexities. Downloading the run-time image over Ethernet connections, serial
cable, DMA, or USB connections from a development computer is a convenience
feature that can help to save development time. Based on the source code included
with Platform Builder for Windows Embedded CE 6.0, you can also develop a custom
boot loader to support new hardware or features. For example, you can use a boot
loader to copy the run-time image from RAM into flash memory and eliminate the
need for a separate flash memory programmer or Institute of Electrical and Electronic
Engineers (IEEE) 1149.1-compliant test access port and boundary-scanning
technology. However, debugging and testing a boot loader is a complex undertaking
because you are working with code that runs before the kernel loads.

After this lesson, you will be able to:

■ Describe the CE boot loader architecture.

■ List common debugging techniques for boot loaders.

Estimated lesson time: 15 minutes.

CE Boot Loader Architecture
The underlying idea of a boot loader is to bootstrap a small program with pre-boot
routines in linear, nonvolatile, CPU-accessible memory. Having placed the initial boot
loader image on the target device at the memory address where the CPU begins to
retrieve code through a built-in monitor program provided by the board manufacturer
or a JTAG probe, the boot loader runs whenever you power up or reset the system.
Typical boot loader tasks performed at this stage include initializing the Central
Processing Unit (CPU), the memory controller, system clock, Universal
Asynchronous Receiver/Transmitters (UARTs), Ethernet controllers, and possibly
other hardware devices, downloading the run-time image and copying it into RAM
according to the binary image builder (BIB) layout, and jumping to the StartUp

Lesson 4: Testing the Boot Loader 187

function. The last record of the run-time image contains this function’s start address.
The StartUp function then continues the boot process by calling the kernel
initialization routines.

Although the various boot loader implementations differ in their complexity and the
tasks they perform, there are common characteristics that Windows Embedded CE
covers through static libraries to facilitate boot loader development, as illustrated in
Figure 4–14. The resulting boot loader architecture influences how you can debug
boot loader code. Chapter 5, “Customizing a Board Support Package,” discusses boot
loader development in more detail.

Figure 4-14 Windows Embedded CE boot loader architecture

The Windows Embedded CE boot loader architecture is based on the following code
portions and libraries:

■ BLCOMMON Implements the basic boot loader framework for copying the
boot loader from flash memory to RAM for faster execution, decoding image file
contents, verifying checksums, and keeping track of load progress.
BLCOMMON calls well-defined OEM functions throughout the process to
handle hardware-specific customizations.

■ OEM code This is the code that OEMs must implement for their hardware
platforms to support the BLCOMMON library.

■ Eboot Provides Dynamic Host Configuration Protocol (DHCP), Trivial File
Transfer Protocol (TFTP), and User Datagram Protocol (UDP) services to
download run-time images over Ethernet connections.

■ Bootpart Provides storage partitioning routines so that the boot loader can
create a binary ROM image file system (BinFS) partition and a second partition

BLCOMMON

OEM Code

Eboot

Network
Driver

Flash
Memory

Target Device

Bootpart

188 Chapter 4 Debugging and Testing the System

with another file system on the same storage device. Bootpart can also create a
boot partition to store boot parameters.

■ Network drivers Encapsulate the basic initialization and access primitives for
a variety of common network controller devices. The interface for the libraries is
generic so that both the boot loader and the OS can use the interface. The boot
loader uses the interface for downloading run-time images and the OS uses the
interface to implement a KITL connection to Platform Builder.

Debugging Techniques for Boot Loaders
The boot loader design typically consists of at least two distinctive parts. The first part
is written in assembly language and initializes the system before jumping to a second
part written in C. If you are using a BLCOMMON-based architecture as illustrated in
Figure 4–14, you might not have to debug assembly code. If your device is equipped
with a UART, you can use the RETAILMSG macro in C code to send data over a serial
output interface to the user for display.

Depending on whether you must debug assembly or C code, the following different
debugging techniques are available:

■ Assembly code Common debugging techniques for the initial startup code rely
on LEDs, such as a debugging board with seven-segment LEDs and UARTs for a
serial communication interface, because it is relatively straightforward to access
General Purpose Input/Output (GPIO) registers and modify the state of an
input/output line.

■ C Code Debugging is much easier at the C-code level because you can access
advanced communication interfaces and debugging macros.

■ Assembly and C code If a hardware debugger (JTAG probe) is available, you
can use Platform Builder in conjunction with an eXDI driver to debug the boot
loader.

EXAM TIP

To pass the certification exam, make sure you know the different techniques to debug the boot
loader, kernel, device drivers, and applications.

Lesson 4: Testing the Boot Loader 189

Lesson Summary
Debugging the boot loader is a complex task that requires a good understanding of
the hardware platform. If a hardware debugger is available, you can use Platform
Builder in conjunction with an eXDI driver for hardware-assisted debugging.
Otherwise, consider using an LED board for debugging assembly code and C-style
macros to output debug messages over a serial communication interface in C code.

190 Chapter 4 Debugging and Testing the System

Lab 4: System Debugging and Testing based on KITL,
Debug Zones, and CETK Tools

In this lab, you debug a console application added as a subproject to an OS design
based on the Device Emulator BSP. To enable debugging, you include KdStub and
KITL in the run-time image and configure corresponding target-device connectivity
options. You then modify the source code of the console application to implement
support for debug zones, specify initially active debug zones in the Pegasus registry
key, and attach to the target device with the Kernel Debugger to examine the debug
messages in the Output window of Visual Studio. Subsequently, you use the CETK to
test the mouse driver included in the run-time image. To create the initial OS design
in Visual Studio, follow the procedures outlined in Lab 1, “Creating, Configuring, and
Building an OS Design.”

NOTE Detailed step-by-step instructions

To help you successfully master the procedures presented in this Lab, see the document
“Detailed Step-by-Step Instructions for Lab 4” in the companion material for this book.

� Enable KITL and Use Debug Zones

1. Open the OS design project created in Lab 1 in Visual Studio, right-click the
OSDesign name and select Properties to edit the OS design properties, select
Configuration Properties and then Build Options, and then select the Enable
KITL check box for the run-time image.

2. In the OS Design property pages dialog box, also enable the Kernel Debugger
feature, apply the changes, and then close the dialog box.

3. Verify that you are currently working in debug build configuration to build an
image that contains the KITL and Kernel Debugger components activated in the
previous steps.

4. Build the OS design by selecting Rebuild Current BSP and Subprojects under
Advanced Build Commands on the Build menu (perform a Clean Sysgen if you
encounter errors during subsequent steps).

5. Open the Target menu and click Connectivity Options to display the Target
Device Connectivity Options dialog box. Configure the following settings, as
shown in Table 4-6 and then click OK.

Lab 4: System Debugging and Testing based on KITL, Debug Zones, and CETK Tools 191

6. Add a subproject to the OS design and select the WCE Console Application
template. Name the project TestDbgZones and select the option A Typical Hello
World Application in the CE Subproject Wizard.

7. Add a new header file called DbgZone.h to the subproject and define the
following zones:

#include <DBGAPI.H>

#define DEBUGMASK(n) (0x00000001<<n)

#define MASK_INIT DEBUGMASK(0)

#define MASK_DEINIT DEBUGMASK(1)

#define MASK_ON DEBUGMASK(2)

#define MASK_ZONE3 DEBUGMASK(3)

#define MASK_ZONE4 DEBUGMASK(4)

#define MASK_ZONE5 DEBUGMASK(5)

#define MASK_ZONE6 DEBUGMASK(6)

#define MASK_ZONE7 DEBUGMASK(7)

#define MASK_ZONE8 DEBUGMASK(8)

#define MASK_ZONE9 DEBUGMASK(9)

#define MASK_ZONE10 DEBUGMASK(10)

#define MASK_ZONE11 DEBUGMASK(11)

#define MASK_ZONE12 DEBUGMASK(12)

#define MASK_FAILURE DEBUGMASK(13)

#define MASK_WARNING DEBUGMASK(14)

#define MASK_ERROR DEBUGMASK(15)

#define ZONE_INIT DEBUGZONE(0)

#define ZONE_DEINIT DEBUGZONE(1)

#define ZONE_ON DEBUGZONE(2)

#define ZONE_3 DEBUGZONE(3)

#define ZONE_4 DEBUGZONE(4)

#define ZONE_5 DEBUGZONE(5)

#define ZONE_6 DEBUGZONE(6)

#define ZONE_7 DEBUGZONE(7)

#define ZONE_8 DEBUGZONE(8)

#define ZONE_9 DEBUGZONE(9)

#define ZONE_10 DEBUGZONE(10)

#define ZONE_11 DEBUGZONE(11)

#define ZONE_12 DEBUGZONE(12)

Table 4-6 Device connectivity settings

Configuration Parameter Setting

Download Device Emulator (DMA)

Transport Device Emulator (DMA)

Debugger KdStub

192 Chapter 4 Debugging and Testing the System

#define ZONE_FAILURE DEBUGZONE(13)

#define ZONE_WARNING DEBUGZONE(14)

#define ZONE_ERROR DEBUGZONE(15)

8. Add an include statement for the DbgZone.h header file to the TestDbgZones.c
file:

#include "DbgZone.h"

9. Define the dpCurSettings variable for the debug zones above the _tmain
function, as follows:

DBGPARAM dpCurSettings =

{

 TEXT("TestDbgZone"),

 {

 TEXT("Init"), TEXT("Deinit"), TEXT("On"), TEXT("n/a"),

 TEXT("n/a"), TEXT("n/a"), TEXT("n/a"), TEXT("n/a"),

 TEXT("n/a"), TEXT("n/a"), TEXT("n/a"), TEXT("n/a"),

 TEXT("n/a"), TEXT("Failure"), TEXT("Warning"), TEXT("Error")

 },

 MASK_INIT | MASK_ON | MASK_ERROR

};

10. Register the debug zones of the module in the first line of the _tmain function:

DEBUGREGISTER(NULL);

11. Use the RETAILMSG and DEBUGMSG macros to display debug messages and
associate them with debug zones, as follows:

DEBUGMSG(ZONE_INIT,

 (TEXT("Message : ZONE_INIT")));

RETAILMSG(ZONE_FAILURE || ZONE_WARNING,

 (TEXT("Message : ZONE_FAILURE || ZONE_WARNING")));

DEBUGMSG(ZONE_DEINIT && ZONE_ON,

 (TEXT("Message : ZONE_DEINIT && ZONE_ON")));

12. Build the application, attach to the target device, and then start the application
by using the Target Control window.

13. Note that only the first debug message is displayed in the debug Output
window:

4294890680 PID:3c50002 TID:3c60002 Message : ZONE_INIT

14. Open the registry editor (Regedit.exe) on your development computer to
activate the remaining debug zones, by default.

Lab 4: System Debugging and Testing based on KITL, Debug Zones, and CETK Tools 193

15. Open the HKEY_CURRENT_USER\Pegasus\Zones key and create a
REG_DWORD value called TestDbgZone (according to the name of the module
defined in the dpCurSettings variable).

16. Set the value to 0xFFFF to enable all 16 named zones, which correspond to the
lower 16 bits in this 32 bit DWORD value (see Figure 4–15).

17. In Visual Studio, start the application again, and notice the following output:

4294911331 PID:2270006 TID:2280006 Message : ZONE_INIT

4294911336 PID:2270006 TID:2280006 Message : ZONE_FAILURE || ZONE_WARNING

4294911336 PID:2270006 TID:2280006 Message : ZONE_DEINIT && ZONE_ON

18. Change the TestDbgZone value in the registry to enable and disable different
debug zones and verify the results in the Output window of Visual Studio.

Figure 4-15 HKEY_CURRENT_USER\Pegasus\Zones: "TestDbgZone"=dword:FFFF

NOTE Enabling and disabling debug zones in Platform Builder

You cannot control the debug zones for the TestDbgZone module in Platform Builder because
the application process exits before you can open and modify the active zone for this module.
You can only manage debug zones for loaded modules in Platform Builder, such as for graphical
applications and DLLs.

194 Chapter 4 Debugging and Testing the System

� Perform Mouse Driver Tests by Using the CETK

1. Open the Windows CE Test Kit application from the Start menu on your
development computer (open the Windows Embedded CE 6.0 menu and click
Windows Embedded CE Test Kit).

2. In the Windows Embedded CE Test Kit window, open the Connection menu
and click Start Client to establish a connection to the target device.

3. Click Connect and select the device in the Connection Manager window.

4. Verify that the workstation server application connects successfully to the
device, deploys the required CETK binaries, detects available device drivers, and
displays a list of all components in a hierarchical tree, as shown in Figure 4–16.

5. Right-click the Windows CE Test Catalog node and click Deselect All Tests.

6. Open each node in the list and select the Mouse Test check box.

7. Open the Test menu and then clock on Start/Stop Test to perform a mouse test.

8. On the target device perform the required mouse actions.

9. Complete the test and then can access the test report by right-clicking the test
entry and selecting View Results.

10. Examine the results in the CETK parser and notice successful, skipped, and
failed test procedures.

Figure 4-16 Device categories in the Windows Embedded CE Test Kit window

Chapter 4 Review 195

Chapter Review
Platform Builder for Windows Embedded CE ships with a comprehensive set of
debugging and testing tools to diagnose and eliminate root causes of errors, and
validate the system in its final configuration prior to its release to production. The
debugging tools integrate with Visual Studio and communicate over KITL
connections with the target device. Alternatively, you can create a memory dump and
use the CE Dump File Reader to debug the system in offline mode, which is
particularly useful for postmortem debugging. The debugging environment is also
extensible by means of eXDI drivers to perform hardware-assisted debugging beyond
the capabilities of the standard Kernel Debugger.

The Kernel Debugger is a hybrid debugger for kernel components and applications.
Debugging starts automatically if you attach to a target device with KdStub and KITL
enabled. You can use the Target Control window to start applications for debugging
and perform advanced system tests based on CEDebugX commands. However, it is
important to keep in mind that you cannot set breakpoints in interrupt handlers or
OAL modules because at these levels, the kernel operates in single-thread mode and
stops communicating with the development workstation if code execution halts. To
debug interrupt handlers, use a hardware debugger or debug messages. The debug
messages feature supports debug zones to control the information output without
having the rebuild the run-time image. You can also use debug messages to debug the
C-code portion of a boot loader, yet for the assembly code portion you must use a
hardware debugger or an LED panel.

KITL is also a requirement if you want to centralize system testing based on the CETK
Test application, although it is also possible to run CETK tests in standalone mode. If
you are developing a custom BSP for a target device, you can use the CETK to perform
automated or semi-automated component tests based on custom Tux DLLs. Platform
Builder includes a WCE TUX DLL template to create a skeleton Tux module that you
can extend to meet your specific testing needs. You can integrate the custom Tux DLL
in the CETK test application and run tests individually or as part of a larger test suite.
Because all CETK tests use the same logging engine and log file format, you can use
the same parser tool to analyze the results of default and user-defined tests.

196 Chapter 4 Review

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ Debug Zones

■ KITL

■ Hardware debugger

■ dpCurSettings

■ DebugX

■ Target Control

■ Tux

■ Kato

Suggested Practices
To help you successfully master the exam objectives presented in this chapter,
complete the following tasks.

Detect Memory Leaks
Add a subproject to the OS design for a console application that generates memory
leaks by allocating memory blocks and never freeing them. Using the tools discussed
in this chapter, isolate the issue and fix it.

Custom CETK Test
Add a subproject to the OS design for a WCE TUX DLL. Build the Tux DLL and
register it in the Windows Embedded CE Test Kit application. Run a CETK test and
verify the test results. Set breakpoints in your Tux DLL and debug the code by
running a CETK test in standalone mode.

197

Chapter 5

Customizing a Board Support
Package

Application developers do not often need to create a Board Support Package (BSP).
However, Original Equipment Manufacturers (OEMs) face this requirement when
porting Microsoft® Windows® Embedded CE 6.0 R2 to a new hardware platform. To
help OEMs accomplish this task efficiently, Windows Embedded CE features a
production-quality OEM adaptation layer (PQOAL) architecture that promotes code
reuse based on a collection of OAL libraries organized by processor model and OAL
function. Microsoft encourages OEM developers to clone and customize an existing
BSP to meet their specific requirements and take full advantage of tested and proven
production features for power management, performance optimizations, and input/
output controls (IOCTL). This chapter covers the PQOAL architecture, explains how
to clone BSPs, and lists the functions that OEM developers must implement in order
to adapt Windows Embedded CE to new hardware architectures and models. It is
advantageous to understand the various aspects of customizing a BSP even if you do
not intend to develop your own. This chapter will provide an overview of the aspects
of BSP customization, ranging from modifications of the startup process and
implementing kernel initialization routines, to adding device drivers, power
management capabilities, and support for performance optimization.

Exam objectives in this chapter:

■ Understanding the BSP architecture of Windows Embedded CE

■ Modifying and adapting BSPs and boot loaders for specific target devices

■ Understanding memory management and layout

■ Enabling power management in a BSP

198 Chapter 5 Customizing a Board Support Package

Before You Begin
To complete the lessons in this chapter, you must have the following:

■ At least some basic knowledge about Windows Embedded CE software
development.

■ A thorough understanding of hardware architectures for embedded devices.

■ Basic knowledge about power management and how to implement it in drivers
and applications.

■ A development computer with Microsoft Visual Studio® 2005 Service Pack 1 and
Platform Builder for Windows Embedded CE 6.0 R2 installed.

Lesson 1: Adapting and Configuring a Board Support Package 199

Lesson 1: Adapting and Configuring a
Board Support Package

The BSP development process for a new hardware platform typically begins after
performing functional tests of the hardware by using a ROM monitor, by cloning an
appropriate reference BSP, followed by implementing a boot loader and the core OAL
functions to support the kernel. The goal is to create a bootable system with the least
possible amount of custom code. You can then add device drivers to the BSP to
support integrated and peripheral hardware and expand the system by implementing
power management and other advanced operating system (OS) features according to
the capabilities of the target device.

After this lesson, you will be able to:

■ Identify and locate the content of a PQOAL–based Board Support Package.

■ Identify hardware-specific and common-code libraries.

■ Understand how to clone a BSP.

■ Adapt a boot loader, OAL, and device drivers.

Estimated lesson time: 40 minutes.

Board Support Package Overview
A BSP contains all the source code for the boot loader, OAL, and device drivers for a
given platform. In addition to these components, the BSP also contains build and
system configuration files, as illustrated in Figure 5–1. The configuration files are not
included in the actual run-time image, yet they are part of the BSP package to specify
source code files, memory layout, registry settings, and other aspects to compile and
build the run-time image, as explained in Chapter 2, “Building and Deploying a Run-
Time Image.”

200 Chapter 5 Customizing a Board Support Package

Figure 5-1 Components of a BSP in relationship to the remaining elements of
Windows Embedded CE 6.0

R
un

-T
im

e-
Im

ag
e

B
oa

rd
 S

up
po

rt
 P

ac
ka

ge

W
in

do
w

s
Em

be
dd

ed
 C

E
Ap

pl
ic

at
io

ns

W
in

do
w

s
Em

be
dd

ed
 C

E
S

he
ll

S
er

vi
ce

s

Em
be

dd
ed

 S
he

ll
S

he
ll

an
d

Ap
pl

ic
at

io
ns

W
in

 3
2
 A

PI
s

C
or

ed
II

W
in

S
oc

k
O

LE
C

om
m

C
tr

l
C

om
m

D
lg

W
in

In
et

TA
PI

G
W

ES
K
er

ne
l L

ib
ra

ry

B
oo

t
Lo

ad
er

R
TC

Li
br

ar
y

O
S

 T
im

er
Li

br
ar

y
C

ac
he

Li
br

ar
y

S
ta

rt
up

Li
br

ar
y

In
te

rr
up

t
Li

br
ar

y
IO

C
TL

Li
br

ar
y

K
IT

L
Li

br
ar

y
D

ev
ic

e
D

riv
er

s
N

at
iv

e
D

riv
er

s

Fi
le

S
ys

te
m

D
riv

er
s

O
AL

N
et

w
or

k
D

riv
er

s

O
th

er
H

ar
dw

ar
e

S
er

ia
l P

or
t

U
S

B
 P

or
t

S
ta

nd
ar

d
D

ev
el

op
m

en
t

B
oa

rd
 (
S

D
B

)
C

ac
he

s
Ti

m
er

s
R

TC
Et

he
rn

et
Po

rt

C
on

fig
ur

at
io

n
Fi

le
s

Fi
le

M
an

ag
er

D
ev

ic
e

M
an

ag
er

R
em

ot
e

C
on

ne
ct

iv
ity

TC
P/

IP
IrD

A

Lesson 1: Adapting and Configuring a Board Support Package 201

According to Figure 5–1, BSP development includes the following main components:

■ Boot loader Runs when powering up or resetting the device. The boot loader
is responsible for initializing the hardware platform and passing execution to the
operating system.

■ OEM adaptation layer (OAL) Represents the core of the BSP and is the interface
between the kernel and the hardware. Because it is linked directly to the kernel, it
becomes part of the kernel in a CE run-time image. Some of the core kernel
components are directly dependent on the OAL for hardware initialization, such
as the interrupt handling and timer handling for the thread scheduler.

■ Device drivers Manage the functionality of a particular peripheral and provide
an interface between the device hardware and the operating system. Windows
Embedded CE supports a variety of driver architectures based on the interfaces
they expose, as explained in Chapter 6, “Developing Device Drivers.”

■ Configuration files Provide the necessary information to control the build
process and plays a key role in the design of a platform’s operating system.
Typical configuration files included in BSPs are Sources files, Dirs files,
Config.bib, Platform.bib, Platform.reg, Platform.db, Platform.dat, and catalog
files (*.pbcxml).

Adapting a Board Support Package
It is generally a good idea to jump start the BSP development process by cloning an
existing reference BSP instead of creating a BSP from scratch. Even if you must
develop a BSP for an entirely new platform with an entirely new CPU, it is still
recommended to clone a BSP based on a similar processor architecture. In this way,
you can reduce BSP development time by reusing hardware-independent code from
the existing BSP and shorten future migration cycles to new Windows Embedded
versions as they become available on the market. Migrating a proprietary BSP design
is generally much harder to do than migrating a PQOAL–based design because the
proprietary BSP cannot benefit from those PQOAL code portions that Microsoft
implicitly migrates and tests as part of the new operating system version.

Adapting a board support package includes the following sequence of steps:

1. Cloning a reference BSP.

2. Implementing a boot loader.

3. Adapting the OAL functions.

202 Chapter 5 Customizing a Board Support Package

4. Modifying the run-time image configuration files.

5. Developing device drivers.

Cloning a Reference BSP
Platform Builder includes a wizard that facilitates cloning a reference BSP. This wizard
copies the entire source code of the selected reference BSP to a new folder structure so
that you can customize the BSP for the new hardware without affecting the reference
BSP or other BSPs in the %_WINCEROOT% folder hierarchy. Figure 5–2 illustrates
how to start the BSP Cloning Wizard in Microsoft Visual Studio 2005 with Platform
Builder for Windows Embedded CE 6.0.

Figure 5-2 Cloning a BSP in Visual Studio 2005

NOTE BSP names

When cloning a BSP, you have to choose a new name for this new set of files. The name that you
choose for the platform must match the name of the folder on your hard drive. As mentioned in
the previous chapter, the build engine is based on a command-line script and is not compatible
with spaces in folder names. Therefore, the BSP’s name must not include white spaces. You can
use the underscore (_) character instead.

Lesson 1: Adapting and Configuring a Board Support Package 203

BSP Folder Structure
To increase code reusability, PQOAL–based BSPs feature a common architecture and
corresponding folder structure that is consistent across processor families. Due to
this common architecture, large portions of the source code can be reused regardless
of hardware-specific BSP requirements. Figure 5–3 shows the typical BSP folder
structure and Table 5–1 summarizes the most important BSP folders.

Figure 5-3 Folder structure of a typical BSP

TIP %_TARGETPLATROOT%

You can use the environment variable %_TARGETPLATROOT% in the build window to locate the
path of the BSP being used in the current OS design (Open Release Directory in Build Window
option on the Build menu in Visual Studio).

204 Chapter 5 Customizing a Board Support Package

Table 5-1 Important BSP folders

Folder Description

Root Folder Contains configuration and batch files. The two most
important files for developers are as follows:

■ Sources.cmn Contains macro definitions that are
common across the entire BSP.

■ <BSP Name>.bat Sets the default BSP environment
variables.

CATALOG Contains the BSP catalog file in which all the components of the
BSP are defined. This file is used in the OS design stage to add
or remove BSP features. Chapter 1, “Customizing the Operating
System Design,” discusses how to manage catalog items.

CESYSGEN Contains the Makefile for the Sysgen tool. Configuring a BSP
does requires no changes to this directory.

FILES Contains the build configuration files, such as .bib, .reg, .db,
and .dat files.

SRC Contains the platform-specific source code that you must adapt
according to the PQOAL model, which divides the code
between platform-specific and common components per
CPU type.

COMMON Exists under the Platform directory and contains most of the
BSP source code. It consists of a common set of processor
specific components. The BSP links to libraries in this folder,
generated during the build process. These are libraries for
processor–based peripherals as well as processor-specific OAL
parts. If the hardware uses a CPU from the family of supported
processors, then most of these libraries can be reused without
modification.

Lesson 1: Adapting and Configuring a Board Support Package 205

Platform-Specific Source Code
The most important platform-specific source code that you must adapt as part of your
BSP is for the boot loader, the OAL, and the device drivers. You can find the
corresponding source code underneath the Src folder in the following subdirectories:

■ Src\Boot loader Contains the boot loader code. However, if the boot loader
relies on BLCOMMON and related libraries, then only the basic hardware-
specific part of the boot loader is located in this directory. The reusable boot
loader code is available in the Public folder (%_WINCEROOT%\Public
\Common\Oak\Drivers\Ethdbg) and linked as libraries to the BSP part.
Chapter 4, “Debugging and Testing the System,” introduces the static libraries
that facilitate boot loader development.

■ Src\Oal Contains the bare minimal amount of code that is specific to the
hardware p la t fo r m. The m ajor i ty o f t he OAL code i s loca ted in
%_WINCEROOT%\Platform\Common, divided into hardware-independent,
processor-family-related, chip-set-specific and platform-specific groups. These
code groups provide most of the OAL functionality and are linked to the
platform-specific parts as libraries.

■ Src\Common and Src\Drivers Contains the driver source code, organized in
different categories to facilitate maintenance and portability. These categories
are typically processor-specific and platform-specific. The processor-specific
component is located in the Src\Common directory and requires no
modifications when adapted to new hardware based on the same processor
family.

Implementing a Boot Loader from Existing Libraries
Several aspects have to be considered when adapting a boot loader for a new platform,
including:

■ Changes in the processor architecture.

■ Location of the boot loader code on the target device.

■ Memory architecture of the platform.

■ Tasks to perform during the boot process.

■ Supported transports for downloading the run-time image.

■ Additional features to be supported.

206 Chapter 5 Customizing a Board Support Package

Memory Mappings
The first important adaptation task revolves around the definition of memory
mappings for the boot loader. The standard BSPs included in Windows Embedded
CE define the memory configuration in a .bib file, located in a boot loader
subdirectory, such as %_WINCEROOT%\Platform\Arubaboard\Src\Boot
loader\Eboot\Eboot.bib. The following listing shows an example of an Eboot.bib file,
which you can customize to meet your specific requirements.

MEMORY

; Name Start Size Type

; ------- -------- -------- ----

 ; Reserve some RAM before Eboot.

 ; This memory will be used later.

 DRV_GLB A0008000 00001000 RESERVED ; Driver globals; 4 KB is sufficient.

 EBOOT A0030000 00020000 RAMIMAGE ; Set aside 128 KB for loader; finalize later.

 RAM A0050000 00010000 RAM ; Free RAM; finalize later.

CONFIG

 COMPRESSION=OFF

 PROFILE=OFF

 KERNELFIXUPS=ON

 ; These configuration options cause the .nb0 file to be created.

 ; An .nb0 file may be directly written to flash memory and then

 ; booted. Because the loader is linked to execute from RAM,

 ; the following configuration options

 ; must match the RAMIMAGE section.

 ROMSTART=A0030000

 ROMWIDTH=32

 ROMSIZE=20000

MODULES

; Name Path Memory Type

; ----------- --- -----------

 nk.exe $(_TARGETPLATROOT)\target\$(_TGTCPU)\$(WINCEDEBUG)\EBOOT.exe EBOOT

Driver Globals

Among other things you can use the Eboot.bib file to reserve a memory section for the
boot loader to pass information to the operating system during the startup process.
This information might reflect the current state of initialized hardware, network
communication capabilities if the boot loader supports Ethernet downloads, user and
system flags for the operating system, such as to enable Kernel Independent

Lesson 1: Adapting and Configuring a Board Support Package 207

Transport Layer (KITL), and so on. To enable this communication, the boot loader
and operating system must share a common region of physical memory, which is
referred to as driver globals (DRV_GLB). The above Eboot.bib listing includes a
DRV_GLB mapping. The data that the boot loader passes to the operating system in
the DRV_GLB region must adhere to a BOOT_ARGS structure that you can define
according to your specific requirements.

The following procedure illustrates how to pass Ethernet and IP configuration
information from the boot loader to the operating system through a DRV_GLB
region. To do this, create a header file in the %_WINCEROOT%\Platform\<BSP
Name>\Src\Inc folder, such as Drv_glob.h, with the following content:

#include <halether.h>

// Debug Ethernet parameters.

typedef struct _ETH_HARDWARE_SETTINGS

{

 EDBG_ADAPTER Adapter; // The NIC to communicate with Platform Builder.

 UCHAR ucEdbgAdapterType; // Type of debug Ethernet adapter.

 UCHAR ucEdbgIRQ; // IRQ line to use for debug Ethernet adapter.

 DWORD dwEdbgBaseAddr; // Base I/O address for debug Ethernet adapter.

 DWORD dwEdbgDebugZone; // EDBG debug zones to be enabled.

 // Base for creating a device name.

 // This will be combined with the EDBG MAC address

 // to generate a unique device name to identify

 // the device to Platform Builder.

 char szPlatformString[EDBG_MAX_DEV_NAMELEN];

 UCHAR ucCpuId; // Type of CPU.

} ETH_HARDWARE_SETTINGS, *PETH_HARDWARE_SETTINGS;

// BootArgs - Parameters passed from the boot loader to the OS.

#define BOOTARG_SIG 0x544F4F42 // "BOOT"

typedef struct BOOT_ARGS

{

 DWORD dwSig;

 DWORD dwLen; // Total length of BootArgs struct.

 UCHAR ucLoaderFlags; // Flags set by boot loader.

 UCHAR ucEshellFlags; // Flags from Eshell.

 DWORD dwEdbgDebugZone; // Which debug messages are enabled?

 // The following addresses are only valid if LDRFL_JUMPIMG is set and

 // the corresponding bit in ucEshellFlags is set (configured by Eshell, bit

 // definitions in Ethdbg.h).

 EDBG_ADDR EshellHostAddr; // IP/Ethernet addr and UDP port of host

 // running Eshell.

208 Chapter 5 Customizing a Board Support Package

 EDBG_ADDR DbgHostAddr; // IP/Ethernet address and UDP port of host

 // receiving debug messages.

 EDBG_ADDR CeshHostAddr; // IP/Ethernet addr and UDP port of host

 // running Ethernet text shell.

 EDBG_ADDR KdbgHostAddr; // IP/Ethernet addr and UDP port of host

 // running kernel debugger.

 ETH_HARDWARE_SETTINGS Edbg; // The debug Ethernet controller.

} BOOT_ARGS, *PBOOT_ARGS;

// Definitions for flags set by the boot loader.

#define LDRFL_USE_EDBG 0x0001 // Set to attempt to use debug Ethernet.

// The following two flags are only looked at if LDRFL_USE_EDBG is set.

#define LDRFL_ADDR_VALID 0x0002 // Set if EdbgAddr member is valid.

#define LDRFL_JUMPIMG 0x0004 // If set, do not communicate with Eshell

 // to get configuration information,

 // use ucEshellFlags member instead.

typedef struct _DRIVER_GLOBALS

{

 //

 // TODO: Later, fill in this area with shared information between

 // drivers and the OS.

 //

 BOOT_ARGS bootargs;

} DRIVER_GLOBALS, *PDRIVER_GLOBALS;

StartUp Entry Point and Main Function
The StartUp entry point of the boot loader must be located in linear memory at the
address where the CPU begins fetching code for execution because this routine
carries out the initialization of the hardware. If the adaptation is based on a reference
BSP for the same processor chipset, then most of the CPU-related and memory
controller-related code can remain unchanged. On the other hand, if the CPU
architecture is different, you must adapt the startup routine to perform the following
tasks:

1. Put the CPU in the right mode.

2. Disable all interrupts.

3. Initialize the memory controller.

4. Setup caches, Translation Lookaside Buffers (TLBs), and Memory Management
Unit (MMU).

5. Copy the boot loader from flash memory into RAM for faster execution.

6. Jump to the C code in the main function.

Lesson 1: Adapting and Configuring a Board Support Package 209

The StartUp routine eventually calls the main function of the boot loader, and if the
boot loader is based on BLCOMMON, then this function in turn cal ls
BootLoaderMain, which initializes the download transport by calling OEM platform
functions. The advantage of using the standard libraries provided by Microsoft is that
the modifications required to adapt a BSP to a new hardware platform are
componentized, isolated, and minimized.

Serial Debug Output

The next step in the boot loader adaptation is the initialization of the serial debug
output. This is an important part of the boot process because it enables the user to
interact with the boot loader and the developer to analyze debug messages, as
discussed in Chapter 4, “Debugging and Testing the System.”

Table 5-2 lists the OEM platform functions required to support serial debug output in
the boot loader.

Platform Initialization
Once the CPU and the debug serial output are initialized, you can turn your attention
to the remaining hardware initialization tasks. The OEMPlatformInit routine
performs these remaining tasks, including:

■ Initializing the real-time clock.

■ Setting up external memory, particularly flash memory.

■ Initializing the network controller.

Table 5-2 Serial debug output functions

Function Description

OEMDebugInit Initializes the UART on the platform.

OEMWriteDebugString Writes a string to the debug UART.

OEMWriteDebugByte Writes a byte to the debug UART, used by
OEMWriteDebugString.

OEMReadDebugByte Reads a byte from the debug UART.

210 Chapter 5 Customizing a Board Support Package

Downloading via Ethernet
If the hardware platform includes a network controller, then the boot loader can
download the run-time image over Ethernet. Table 5–3 lists the functions that you
must implement to support Ethernet–based communication.

The Ethernet support functions use callbacks into network controller-specific
routines. This means that you must implement additional routines and set up
appropriate function pointers in the OEMPlatformInit function if you want to support
a different network controller, as demonstrated in the following sample code:

cAdaptType=pBootArgs->ucEdbgAdapterType;

// Set up EDBG driver callbacks based on

// Ethernet controller type.

switch (cAdaptType)

{

case EDBG_ADAPTER_NE2000:

 pfnEDbgInit = NE2000Init;

 pfnEDbgInitDMABuffer = NULL;

 pfnEDbgGetFrame = NE2000GetFrame;

 pfnEDbgSendFrame = NE2000SendFrame;

 break;

case EDBG_ADAPTER_DP83815:

 pfnEDbgInit = DP83815Init;

 pfnEDbgInitDMABuffer = DP83815InitDMABuffer;

 pfnEDbgGetFrame = DP83815GetFrame;

 ...

}

Table 5-3 Ethernet support functions

Function Description

OEMReadData Reads data from the transport for downloading.

OEMEthGetFrame Reads data from the NIC using function pointer
pfnEDbgGetFrame.

OEMEthSendFrame Writes data to the NIC using function pointer
pfnEDbfSendFrame.

OEMEthGetSecs Returns number of seconds passed relative to a fixed
time.

Lesson 1: Adapting and Configuring a Board Support Package 211

Flash Memory Support
Having implemented network communication capabilities, you also must enable the
boot loader to download run-time image onto the new hardware platform and pass
control to it. Alternately, you can save the run-time image to flash memory. Table 5–4
lists the download and flash memory support functions that you must implement for
this purpose if the reference BSP’s boot loader does not already support these
features.

User Interaction
Boot loaders can support user interaction based on a menu that provides the user
with different options to start the platform, which can be helpful during the
development process and later on for maintenance and software updates. Figure 5–4
shows a standard boot loader menu. For sample source code, check out the Menu.c
file located in the Src\Boot loader\Eboot directory of a reference BSP or in the
%_WINCEROOT%\Platform\Common\Src\Common\Boot\Blmenu folder.

Table 5-4 Functions for supporting download and flash memory

Function Description

OEMPreDownload Sets up the necessary download protocol supported
by platform builder.

OEMIsFlashAddr Checks if the image is for flash or RAM.

OEMMapMemAddr Performs temporary remapping of the image
to RAM.

OEMStartEraseFlash Prepares to erase flash of enough size to fit the
OS image.

OEMContinueEraseFlash Continue erasing flash based on download progress.

OEMFinishEraseFlash Complete the flash erasing once the download is
done.

OEMWriteFlash Write OS image to flash.

212 Chapter 5 Customizing a Board Support Package

Figure 5-4 An example of a boot loader menu

Additional Features

Beyond the core functionality, you can also add convenience features, such as
download progress indication, support for downloading multiple .bin files during the
same download session (multi-bin image notification), or downloading only trusted
images. Additionally, you can implement support for downloading run-time images
directly from Platform Builder. To accomplish this task, the boot loader must prepare
a BOOTME packet with details about the target device and send it over the underlying
transport. If the transport is Ethernet then this packet is broadcasted over the
network. The libraries provided by Microsoft support these features, and you can
customize them to suit your needs.

NOTE OEM boot loader functions

For detailed information about required and optional boot loader functions as well as boot
loader structures, see the section “Boot Loader Reference” in the Windows Embedded CE 6.0
Documentation, available on the Microsoft MSDN® Web site at http://msdn2.microsoft.com/en-
us/library/aa908395.aspx.

Adapting an OAL
A significant portion of the BSP adaptation revolves around the platform-specific part
of the OAL. If the new platform uses a CPU that is not currently supported, then the
OAL adaptation requires you to modify most of the OAL code to support the new
processor architecture. On the other hand, if the new hardware is very similar to the
reference BSP’s platform, you might be able to reuse most of the existing code base.

Lesson 1: Adapting and Configuring a Board Support Package 213

OEM Address Table
The kernel performs specialized tasks, such as initializing virtual memory, and
cannot rely on a boot loader for this because the kernel must be entirely self-
contained. Otherwise, the operating system would depend on the presence of a boot
loader and it would not be possible to bootstrap the run-time image directly. Yet, to
establish virtual-to-physical address mappings through the Memory Management
Unit (MMU), the kernel must know the memory layout of the underlying hardware
platform. To obtain this information, the kernel uses an important table called
OEMAddressTable (or g_oalAddressTable) that defines static virtual memory
regions. The OAL includes a declaration of OEMAddressTable as a read-only section
and one of the first actions taken by the kernel is to read this section, set up
corresponding virtual memory mapping tables, and then transition to the virtual
address where the kernel can execute code. The kernel can determine the physical
address of the OEMAddressTable in linear memory based on the address information
available in the run-time image.

You must indicate any differences in the memory configuration of a new hardware
platform by modifying the OEMAddressTable. The following sample code illustrates
how to declare the OEMAddressTable section.

;--

public _OEMAddressTable

 _OEMAddressTable:

 ; OEMAddressTable defines the mapping between Physical and Virtual Address

 ; o MUST be in a READONLY Section

 ; o First Entry MUST be RAM, mapping from 0x80000000 -> 0x00000000

 ; o each entry is of the format (VA, PA, cbSize)

 ; o cbSize must be multiple of 4M

 ; o last entry must be (0, 0, 0)

 ; o must have at least one non-zero entry

 ; RAM 0x80000000 -> 0x00000000, size 64M

 dd 80000000h, 0, 04000000h

 ; FLASH and other memory, if any

 ; dd FlashVA, FlashPA, FlashSize

 ; Last entry, all zeros

 dd 0 0 0

214 Chapter 5 Customizing a Board Support Package

StartUp Entry Point
Similar to the boot loader, the OAL contains a StartUp entry point to which the boot
loader or system can jump in order to start kernel execution and initialize the system.
For example, the assembly code for putting the processor in the correct state is
usually the same as the code used in the boot loader. In fact, code sharing between the
boot loader and the OAL is a common practice to minimize code duplication in the
BSP. Yet not all code runs twice. For example, on hardware platforms that start from
a boot loader, StartUp directly jumps to the KernelStart function, as the boot loader
has already performed the intialization groundwork.

The KernelStart function initializes the memory-mapping tables as discussed in the
previous section and loads the kernel library to run Microsoft kernel code. The
Microsoft kernel code now calls the OEMInitGlobals function to pass a pointer to a
static NKGLOBALS structure to the OAL and retrieve a pointer to an OEMGLOBALS
structure in the form of a return value from the OAL. NKGLOBALS contains pointers
to all the functions and variables used by KITL and the Microsoft kernel code.
OEMGLOBALS has pointers to all the functions and variables implemented in the
OAL for the BSP. By exchanging pointers to these global structures, Oal.exe and
Kernel.dll have access to each other’s functions and data, and can continue with
architecture-generic and platform-specific startup tasks.

The architecture-generic tasks include setting up page tables and cache information,
flushing TLBs, initializing architecture-specific buses and components, setting up the
interlocked API code, loading KITL to support kernel communication for debugging
purposes, and initializing the kernel debug output. The kernel then proceeds by
calling the OEMInit function through the function pointer in the OEMGLOBALS
structure to perform platform-specific initialization.

Table 5–5 lists the platform-specific funtions that Kernel.dll calls and that you might
have to modify in your BSP to run Windows Embedded CE on a new hardware
platform.

Table 5-5 Kernel startup support functions

Function Description

OEMInitGlobals Exchanges global pointers between Oal.exe and
Kernel.dll.

OEMInit Initializes the hardware interfaces for the platform.

Lesson 1: Adapting and Configuring a Board Support Package 215

Kernel Independent Transport Layer
The OEMInit function is the main OAL routine that initializes board-specific
peripherals, sets up the kernel variables, and starts KITL by passing a KITL IOCTL to
the kernel. If you added and enabled KITL in the run-time image, the kernel starts
KITL for debugging over different transport layers, as discussed in Chapter 4,
“Debugging and Testing the System.”

Table 5–6 lists the functions that the OAL must include to enable KITL support on a
new platform.

OEMGetExtensionDRAM Provides information about additional RAM, if
available.

OEMGetRealTime Retrieves time from RTC.

OEMSetAlarmTime Sets the RTC alarm.

OEMSetRealTime Set the time in the RTC.

OEMIdle Puts CPU in idle state when no threads are running.

OEMInterruptDisable Disables particular hardware interrupt.

OEMInterruptEnable Enables particular hardware interrupt.

OEMInterruptDone Signals completion of interrupt processing.

OEMInterruptHandler Handles interrupts (is different for SHx processors).

OEMInterruptHandler Handles FIQ (specific for ARM processors).

OEMIoControl IO control code for OEM information.

OEMNMI Supports a non maskable interrupt (specific to SHx
processor).

OEMNMIHandler Handler for non maskable interrupt (specific to SHx
processor).

OEMPowerOff Puts CPU in suspend state and takes care of final
power down operations.

Table 5-5 Kernel startup support functions (Continued)

Function Description

216 Chapter 5 Customizing a Board Support Package

Profile Timer Support
Located at the core of the operating system, the OAL is a perfect choice for
mechanisms to measure the performance of the system and support performance
optimization. As discussed in Chapter 3, “Performing System Programming,” you can
use the Interrupt Latency Timing (ILTiming) tool to measure the time it takes to
invoke an interrupt service routine (ISR) after an interrupt occurred (ISR latency) and
the time between when the ISR exits and the interrupt service thread (IST) actually
starts (IST latency). However, this tool requires a system hardware tick timer or
alternative high-resolution timer that is not available on all hardware platforms. If the
new hardware platform supports a high-resolution hardware timer, you can support
ILTiming and similar tools by implementing the functions listed in Table 5–7.

Table 5-6 KITL support functions

Function Description

OEMKitlInit Initializes KITL.

OEMKitlGetSecs Returns the current time in seconds.

TransportDecode Decodes recevied frames.

TransportEnableInt Enables or disables KITL interrupt if it is interrupt
based.

TransportEncode Encodes data accroding the transport’s required
frame structure.

TransportGetDevCfg Retrieves the device’s KITL transport configuration.

TransportReceive Receives a frame from the transport.

TransportSend Sends a frame using the transport.

KitlInit Initializes KITL system.

KitlSendRawData Sends raw data using the transport bypassing the
protocol.

KitlSetTimerCallback Registers a callback that is called after a specified
amount of time.

KitlStopTimerCallback Disables a timer used by the above routine.

Lesson 1: Adapting and Configuring a Board Support Package 217

NOTE Thread scheduling and interrupt handling

The OAL must also support interrupt handling and the kernel scheduler . The scheduler is inde-
pendent of the processor type, yet interrupt handling must be optimized for different types of
processors.

Integrating New Device Drivers
Apart from the core system functions, the BSP also contains device drivers for
peripherals. These peripheral devices can be components on the processor chip or
external components. Even when separate from the processor, they remain an
integral part of the hardware platform.

Device Driver Code Locations
Table 5–8 lists the source code locations for device drivers according to the PQOAL
model. If your BSP is based on the same processor as the reference BSP, then the
adaptation of device drivers mainly requires modification to the source code in the
%TGTPLATROOT% folder. It is also possible to add new drivers to the BSP if the new
platform includes peripherals that are not present in the reference platform. For more
information about developing device drivers, see Chapter 6, “Developing Device
Drivers.”

Table 5-7 Profile timer support functions

Function Description

OEMProfileTimerEnable Enables a profiler timer.

OEMProfileTimerDisable Disables a profiler timer.

Table 5-8 Source code folders for device drivers

Folder Description

%_WINCEROOT%\Platform\%_TGTPLAT% Contains platform
dependent drivers.

%_WINCEROOT%\Platform\Common\Src\Soc Contains drivers for
processor-native
peripherals.

218 Chapter 5 Customizing a Board Support Package

Modifying Configuration Files
If you cloned your BSP from an existing BSP, all configuration files are already in
place. However, it is important that you review the memory layout in the Config.bib
file, as explained in detail in Lesson 2. The other configuration files require
modifications only if you added new drivers or modified components in the BSP, as
explained in Chapter 2, “Building and Deploying a Run-Time Image.”

Lesson Summary
It is advantageous to start the BSP development process by cloning an appropriate
reference BSP. Ideally, this BSP should be based on the same or similar hardware
platform because this makes the most of tested and proven production features.
Windows Embedded CE features a PQOAL architecture and Platform Builder tools
that facilitate the cloning process. The goal is to create a bootable system with
minimum customizations and then add additional features and support for
peripheral devices as necessary.

The first component of a BSP that you might have to adapt is the boot loader, which
is responsible for initializing the hardware platform and passing execution to the
kernel. The second component is the OAL, which contains the platform-specific code
that the kernel needs for hardware initialization, interrupt handling, and timer
handling for the thread scheduler, KITL, and kernel debug output. The third part of
the BSP you must adapt is the device drivers for peripheral devices. The fourth part
of the BSP requiring adaptation is the configuration files that control the build
process, determine the memory layout, and specify system configuration settings. If
the BSP adaption is based on a reference BSP for the same processor architecture, then
most of the CPU-related and memory controller-related BSP code can remain
unchanged. You only need to address platform-specific code portions that focus on
bringing up the hardware, rather than creating the necessary setup for the BSP.

%_WINCEROOT%\Public\Common\Oak\Drivers Contains drivers for
non-native peripherals
that include external
controllers.

Table 5-8 Source code folders for device drivers (Continued)

Folder Description

Lesson 2: Configuring Memory Mapping of a BSP 219

Lesson 2: Configuring Memory Mapping of a BSP
Memory management in Windows Embedded CE has changed significantly from
previous versions. In past versions, all processes shared the same 4 GB address space.
With CE 6.0, each process has its own unique address space. The new system of
managing virtual memory enables CE 6.0 to run up to 32,000 processes in contrast to
the previous 32 processes limitation. This lesson covers the details of the new
memory architecture and management, so that you can map virtual memory regions
to correct physical memory addresses on the platform.

After this lesson, you will be able to:

■ Describe how Windows Embedded CE manages virtual memory.

■ Configure static memory mappings for a hardware platform.

■ Map noncontiguous physical memory to virtual memory on the system.

■ Share resources between OAL and device drivers.

Estimated lesson time: 15 minutes.

System Memory Mapping
Windows Embedded CE uses a paged virtual memory management system with a 32-
bit virtual address space, mapped to physical memory by using the MMU. With 32
bits, the system can address a total of 4 GB of virtual memory, which CE 6.0 divides
into the following two areas (see Figure 5–5):

■ Kernel space Located in the upper 2 GB of virtual memory and shared between
all application processes running on the target device.

■ User space Located in the lower 2 GB of virtual memory and used exclusively
by each individual process. Each process has its own unique address space. The
kernel manages this mapping of the process address space when a process
switch occurs. Processes cannot access the kernel address space directly.

220 Chapter 5 Customizing a Board Support Package

Figure 5-5 Virtual memory space in Windows Embedded CE 6.0

Kernel Address Space
Windows Embedded CE 6.0 divides the kernel address space further into several
regions for specific purposes, as illustrated in Figure 5–6. The lower two regions of
512 MB each statically map physical memory into cached and non-cached virtual
memory. The middle two regions for kernel execute in place (XIP) DLLs and Object
Store are important for the OS design. The remaining space is for kernel modules and
CPU-specific purposes.

2 GB
Kernel
Space

32 K
Processes

2 GB VM
Per

Process

Kernel
File System

GWES
Drivers

Memory-
Mapped Files

User DLLs

Process Code

Lesson 2: Configuring Memory Mapping of a BSP 221

Figure 5-6 Kernel space in Windows Embedded CE 6.0

Table 5–9 summarizes the kernel virtual memory regions with start and end
addresses.

Kernel Space
2 Gigabytes

Fixed
Mapping

Independent
of User Space

CPU-Specific VM

Object Store (128 MB)

Kernel XIP DLLs (128 MB)

Kernel VM
(If Supported by CPU)

256 MB

Kernel VM
256 MB

Statically Mapped
Uncached
512 MB

Statically Mapped
Cached
512 MB

Table 5-9 Kernel memory regions

Start Address End Address Description

0xF0000000 0xFFFFFFFF Used for CPU specific system trap and kernel
data pages.

0xE0000000 0xEFFFFFFF Kernel virtual machine, it is CPU dependent,
for example this space is not available for SHx.

0xD0000000 0xDFFFFFFF Used for all kernel mode modules of the OS.

0xC8000000 0xCFFFFFFF Object Store used for RAM file system,
database and registry.

0xC0000000 0xC7FFFFFF XIP DLLs.

0xA0000000 0xBFFFFFFF Non-cached mapping of physical memory.

0x80000000 0x9FFFFFFF Cached mapping of physical memory.

222 Chapter 5 Customizing a Board Support Package

Process Address Space
The process address space ranges from 0x00000000 through 0x7FFFFFFF, and is
divided into a CPU-dependent kernel data section, four main process regions, and a
1 MB buffer between user and kernel spaces. Figure 5–7 illustrates the main regions.
The first process region of 1 GB is for application code and data. The next process
region of 512 MB is for the DLLs and read-only data. The next two regions of 256 MB
and 255 MB are for memory-mapped objects and the shared system heap. The shared
system heap is read-only for the application process, but readable and writable for the
kernel.

Figure 5-7 Process space in Windows Embedded CE 6.0

Table 5–10 summarizes the virtual memory regions in user space with start and end
addresses.

User Space

2 Gigabytes
Each process
Has Its Own

Mapping

Shared System Heap
255 MB

Process Space
1 GB Process

RAM-Backed Mapfiles
256 MB

Shared User DLLs
512 MB

Table 5-10 Process memory regions

Start Address End Address Description

0x7FF00000 0x7FFFFFFF An unmapped buffer for protection between
user and kernel spaces.

0x70000000 0x7FEFFFFF Shared heap between the kernel and processes.

0x60000000 0x6FFFFFFF Memory-mapped file objects that do not
correspond to an actual physical file, mainly for
backward compatibility with applications that
used RAM-backed map files for inter-process
communication.

0x40000000 0x5FFFFFFF DLLs loaded into the process and read-only
data.

Lesson 2: Configuring Memory Mapping of a BSP 223

Memory Management Unit

Windows Embedded CE 6.0 requires the processor to provide a memory mapping
mechanism to associate physical memory with virtual memory, up to a maximum of
512 MB of mapped physical memory. Figure 5–8 shows an example with 32 MB of
flash memory and 64 MB of RAM mapped into the cached and non-cached static
mapping regions of the kernel. On ARM–based and x86–based platforms, the
memory mapping relies on a user-defined OEMAddressTable, whereas on the SHx–
based and MIPS–based platforms, the mapping is directly defined by the CPU. The
Memory Management Unit (MMU) is responsible for managing the physical-to-
virtual address mappings.

Figure 5-8 Physical-to-virtual memory mapping example

0x00010000 0x3FFFFFFF Application code and data.

0x00000000 0x00010000 CPU-dependent user kernel data (read-only for
user processes).

Table 5-10 Process memory regions (Continued)

Start Address End Address Description

Physical Memory

Address
Translation

Virtual Memory

5
1

2
 M

B
U

ncached
5

1
2

 M
B

C
ached

2
 G

B
U

ser

32 MB Flash

64 MB RAM

82000000

04000000

00000000 0000 0000

8000 0000

A000 0000

C000 0000

FFFF FFFF

Kernel
Space

64 MB RAM

32 MB Flash

64 MB RAM

32 MB Flash

User
Space

224 Chapter 5 Customizing a Board Support Package

NOTE MMU initialization

The kernel initializes the MMU and creates the necessary page tables during system startup. This
processor-specific part of the kernel depends on the architecture of the hardware platform. For
implementation details, refer to the Windows Embedded CE private code, located in subdirecto-
ries per processor type under %_PRIVATEROOT%\Winceos\Coreos\Kernel.

Statically Mapped Virtual Addresses
The virtual memory regions depicted in Figure 5–8 are statically mapped virtual
addresses to emphasize the fact that they are defined at startup time and the mapping
does not change. Statically mapped virtual addresses are always available and directly
accessible in kernel mode. It is noteworthy, however, that Windows Embedded CE
also supports static mapping at runtime by means of CreateStaticMapping and
NKCreateStaticMapping APIs. These functions return a non-cached virtual address
mapped to the specified physical address.

Dynamically Mapped Virtual Addresses
The kernel can also manage the mapping of physical-to-virtual addresses dynamically,
which is the technique used for all non-static mappings. A driver or DLL loaded into
the kernel through LoadKernelLibrary can reserve a region of virtual memory in the
kernel address space by calling VirtualAlloc and then map the virtual address to a
physical address by creating a new page-table entry through a call to VirtualCopy.
This is a common technique to map virtual addresses to the registers or frame buffers
of peripheral devices in order to perform input/output operations. If the mapped
buffer is no longer needed, the device driver or DLL can call VirtualFree to remove
page-table entry and free the allocated virtual memory.

Memory Mapping and the BSP
You must customize two elements to include information about static memory
mappings in a BSP:

■ Config.bib file Provides information about how the system should use the
different memory regions on the platform. For example, you can specify how
much memory is available for the OS, how much can be used as free RAM and
also reserve memory for specific needs.

Lesson 2: Configuring Memory Mapping of a BSP 225

■ OEMAddressTable Provides information about the memory layout of the
underlying platform, as discussed in Lesson 1. The memory specified in
Config.bib should also be mapped in the OEMAddressTable.

Mapping Noncontiguous Physical Memory

As mentioned in Chapter 2, “Building and Deploying a Run-Time Image,” you must
define a single contiguous region in the RAMIMAGE memory region for the operating
system in the MEMORY section of the Config.bib file. The system uses this definition
to load the kernel image and any modules you specified in the MODULES and FILES
sections. You cannot define multiple RAMIMAGE regions, yet the OAL can extend the
RAMIMAGE region and provide additional noncontiguous memory sections at
runtime.

Table 5–11 summarizes important variables and functions to extend the RAM region.

Table 5-11 Variables and functions to extend the RAM region

Variable/Function Description

MainMemoryEndAddress This variable indicates the end of the RAM region.
The kernel sets this variable initially according to
the size reserved for the operating system in the
Config.bib file. The OAL OEMInit function can
update this variable if additional contiguous
memory is available.

OEMGetExtensionDRAM The OAL can use this function to report the
presence of an additional region of noncontiguous
memory to the kernel. OEMGetExtensionDRAM
returns the start address and length of the second
region of memory.

pNKEnumExtensionDRAM The OAL can use this function pointer to report the
presence of more than one additional region of
memory to the kernel. This mechanism supports
up to 15 different noncontiguous memory regions.
If you implement the pNKEnumExtensionDRAM
function pointer, then OEMGetExtensionDRAM is
not called during the startup process

226 Chapter 5 Customizing a Board Support Package

Enabling Resource Sharing between Drivers and the OAL
Device drivers often need access to physical resources, such as memory-mapped
registers or DMA buffers, yet drivers cannot directly access physical memory because
the system only works with virtual addresses. For device drivers to gain access to
physical memory, the physical addresses must be mapped to virtual addresses.

Dynamically Accessing Physical Memory
If a driver requires physically contiguous memory, as in the case of buffers required
for DMA operations, the driver can allocate contiguous physical memory by using the
AllocPhysMem function. If the allocation is successful, AllocPhysMem returns a
pointer to the virtual address that corresponds to the specified physical address.
Because the system allocates memory, it is important to free the memory later on
when it is no longer needed by calling FreePhysMem.

On the other hand, if a driver requires non-paged access to a physical memory region
defined in Config.bib, you can use the MmMapIoSpace function. MmMapIoSpace
returns a non-paged virtual address that is directly mapped to the specified physical
address. This function is typically used to access device registers.

Statically Reserving Physical Memory
Occasionally, it may be necessary to share a common region of physical memory
between drivers or between a driver and the OAL (such as between an IST and an
ISR). Similar to sharing a memory region for boot arguments between boot loader and
kernel, you can reserve a shared memory region for driver communication purposes
in the Config.bib file. A standard practice is to use the DRIVER_GLOBALS structure
defined in Drv_glob.h, as mentioned in Lesson 1.

Communication between Drivers and the OAL
In addition to the standard set of IOCTLs required by the kernel, drivers can
communicate with the OAL through custom IOCTLs implemented in OEMIoControl.
Kernel-mode drivers call OEMIoControl indirectly through KernelIoControl, passing
in the custom IOCTL. The kernel does no processing, other than passing the
parameters straight through to OEMIoControl. However, user-mode drivers cannot
directly call custom OAL IOCTLs by default. The KernelIOControl calls from user-
mode drivers or processes are passed to OEMIoControl through a kernel-mode
component (Oalioctl.dll), which maintains a list of user-accessible OAL IOCTL codes.
The call is rejected if the requested IOCTL code is not listed in this module, but you

Lesson 2: Configuring Memory Mapping of a BSP 227

can customize this list by modifying the Oalioctl.cpp file that is located in the
%_WINCEROOT%\Public\Common\Oak\Oalioctl folder.

Lesson Summary
A good understanding of the Windows Embedded CE 6.0 memory architecture is a
must for every CE developer. Specifically for BSP developers, it is important to know
how CE 6.0 maps available physical memory into the virtual memory address space.
Accessing memory from OAL, kernel-mode modules, and user-mode drivers and
applications requires a detailed understanding of static and dynamic mapping
techniques that are available in kernel mode or user mode. For more information
about the communication between kernel-mode and user-mode components, refer to
Chapter 6, “Developing Device Drivers.”

228 Chapter 5 Customizing a Board Support Package

Lesson 3: Adding Power Management Support to an OAL
As discussed in Chapter 3, “Performing System Programming,” Windows Embedded
CE 6.0 provides a comprehensive set of power management features based on a Power
Manager component that OEM developers can customize to implement system power
state definitions as appropriate for their hardware platforms. In relationship to the
OAL, implementing power management capabilities is a twofold task. You need to
enable the operating system to control the power state of the hardware components
and you need to enable the hardware platform to inform the operating system about
power state changes. Most embedded devices require at least basic power
management support to reduce power consumption and prolong battery life.

After this lesson, you will be able to:

■ Describe how to reduce processor power consumption.

■ Identify the transition paths to suspend and resume the system.

Estimated lesson time: 15 minutes.

Power State Transitions
Embedded devices that are not constantly in use, such as personal digital assistants
(PDAs), operate for extended periods of time in an idle state, thus providing an
opportunity to preserve energy by switching from full-power mode to a reduced-
power mode or suspend state. Most embedded processors available on the market
today support these transitions, as illustrated in Figure 5–9.

Lesson 3: Adding Power Management Support to an OAL 229

Figure 5-9 Power state transitions

Windows Embedded CE can respond to power-related events in the following ways:

■ Battery critically low The system switches into Critical Off state in response to
a nonmaskable interrupt (NMI) that a voltage comparator on the board triggers,
so that the user can replace the battery and resume.

■ Idle The system switches the CPU into reduced-power mode if the CPU has no
worker threads to run and wakes up when an interrupt occurs.

■ Suspend The system switches the device into Suspend state when the user
presses the Off button or in response to an inactivity timeout and resumes in
response to a wakeup event, such as the user pressing the power button again.
On some embedded devices, the Suspend state corresponds to a true power-off
state, in which case the system resumes with a cold boot.

Reducing Power Consumption in Idle Mode
To switch the device into reduced-power mode, Windows Embedded CE relies on the
OEMIdle function, which the kernel calls when the scheduler has no threads to run.
The OEMIdle function is a hardware-specific routine that depends on the capabilities
of the platform. For example, if the system timer uses a fixed interval, then the
OEMIdle function cannot really provide the expected power saving functionality
because the system wakes up every time a timer interrupt occurs. On the other hand,

Power On

Full Power

W
ar

m
 B

oo
tC
ol

d
B

oo
t

New Battery

Battery Critically Low

Interrupt

No Threads to Run

Wakeup Event

Inactivity Timeout Suspend

Idle

Critical Off

Initialize File System

Initialize RAM

230 Chapter 5 Customizing a Board Support Package

if the processor supports programmable interval timers, you can use the kernel’s
dwReschedTime variable to specify the amount of time spent in reduced-power mode.

On waking up from reduced-power mode, the system must update the kernel global
variables used by the scheduler. This is particularly important for the CurMSec
variable, which the system uses to keep track of the number of milliseconds since the
last system boot. The wakeup source can be either the system timer or another
interrupt. If the wakeup source is the system timer then the CurMSec variable is
already updated before execution is passed back to the OEMIdle function. In other
cases, the CurMSec does not contain an updated value. To learn more about the
OEMIdle implementation details, refer to the Idle.c source code file, located in the
%_WINCEROOT%\Platform\Common\Src\Common\Timer\Idle folder.

NOTE Kernel global variables

For detailed information about global variables that the kernel exports for scheduling, see the
section “Kernel Global Variables for Scheduling” in the Windows Embedded CE 6.0 Documenta-
tion, available on the Microsoft MSDN Web site at http://msdn.microsoft.com/en-us/library/
aa915099.aspx.

Powering Off and Suspending the System
The maximum power saving state that a Windows Embedded CE device can support
is the Power Off or Suspend state. The system can request the device to enter the
Suspend state by calling GwesPowerOffSystem directly or SetSystemPowerState. Both
functions eventually call the OEMPowerOff routine.

The OEMPowerOff routine is part of the OAL and responsible for switching the CPU
into Suspend state. OEMPowerOff should also put the RAM into self-refresh mode if
the processor does not automatically do so when it enters the Suspend state. You can
also set up the interrupts to wake up the device. In handheld devices, this is typically
the power-button interrupt, but you may use any wakeup event source that is
appropriate for your target platform.

Entering the Suspend State

When entering the Suspend state, Windows Embedded CE performs the following
sequence of steps:

1. GWES notifies the Taskbar about the power down event.

2. The system aborts calibration if in the calibration screen.

Lesson 3: Adding Power Management Support to an OAL 231

3. The system stops the Windows message queues. After step 3, the system enters
single-thread mode, which prevents function calls that rely on blocking
operations.

4. The system checks if the startup user interface (UI) must appear on resume.

5. The system saves video memory to RAM.

6. The system calls SetSystemPowerState (NULL, POWER_STATE_SUSPEND,
POWER_FORCE).

7. Power Manager:

a. Calls the FileSystemPowerFunction to power off the drivers related to the
file system.

b. Calls PowerOffSystem to inform the kernel to do the final power down.

c. Calls Sleep(0) to invoke the scheduler.

NOTE FileSystemPowerFunction and PowerOffSystem

If the OS design does not include Power Manager or GWES, then the OEM must explicitly
call FileSystemPowerFunction and PowerOffSystem.

8. Kernel:

a. Unloads GWES process.
b. Unloads Filesys.exe.

c. Calls OEMPowerOff.

9. OEMPowerOff configures the interrupts and puts the CPU in Suspend state.

Waking Up from Suspend State
When a pre-configured interrupt wakes up the system, the associated ISR runs and
returns to the OEMPowerOff routine. On returning from this function, the system
goes through the resume sequence, which includes the following steps:

1. OEMPowerOff re-configures interrupts to original state and returns.

2. Kernel:

a. Calls InitClock to re-initialize the system timer.
b. Starts Filesys.exe with power on notification.

c. Starts GWES with power on notification.
d. Re-initializes KITL interrupt if it was in use.

232 Chapter 5 Customizing a Board Support Package

3. Power Manager calls FileSystemPowerFunction with power on notification.

4. GWES:

a. Restores video memory from RAM.

b. Powers on Windows Manager.

c. Sets the display contrast.

d. Shows startup UI if required.

e. Notifies Taskbar of resume.

f. Notifies User Subsystem.

g. Triggers applications as required.

NOTE Registering wakeup sources

If the OAL supports the kernel IOCTL_HAL_ENABLE_WAKE, applications can register wake up
sources. For detailed information, see the section “IOCTL_HAL_ENABLE_WAKE” in the Windows
Embedded CE 6.0 Documentation, available on the Microsoft MSDN Web site at http://
msdn2.microsoft.com/en-us/library/aa914884.aspx.

Supporting the Critical Off State
On hardware platforms equipped with a voltage comparator that triggers NMI, you
can implement support for the Critical Off state to protect the user from data loss in
low-battery conditions. On x86 hardware, the kernel exports the OEMNMIHandler
function to capture critical events in the system. On other systems, you might have to
implement a custom IST that calls SetSystemPowerState to turn off the system
gracefully with the help of Power Manager. The Critical Off state typically
corresponds to the Suspend state with dynamic RAM refresh enabled.

NOTE Battery level reaches zero

When implementing Critical Off state support, make sure you trigger the NMI at a point when
the system still has time to perform all power down tasks , such as powering down peripherals,
putting RAM into self-refresh, perhaps setting a wakeup condition, and suspending the CPU.

Lesson 3: Adding Power Management Support to an OAL 233

Lesson Summary
Power management is an important Windows Embedded CE feature that ensures
efficient power consumption on target devices. OEMs should implement power
management features in the OAL to enable transitions from full-power mode to Idle
and Suspend modes and Critical Off state for battery-powered devices. Implementing
power management support involves re-synchronizing timer-related kernel variables,
powering down peripherals, putting RAM into self-refresh mode, setting wakeup
conditions, and suspending the CPU. It is not trivial to implement these low-level
routines, yet Microsoft provides sufficient reference code in the sample BSPs to get a
better understanding of the implementation details.

234 Chapter 5 Customizing a Board Support Package

Lab 5: Adapting a Board Support Package
In this lab you clone a reference BSP in Visual Studio 2005 with Platform Builder and
use it to build a run-time image. As the underlying platform, this lab uses the Device
Emulator because this platform can run on the Windows Embedded CE development
computer. Microsoft included the Device Emulator BSP in Platform Builder as a
reference BSP.

NOTE Detailed step-by-step instructions

To help you successfully master the procedures presented in this Lab, see the document
“Detailed Step-by-Step Instructions for Lab 5” in the companion material for this book.

� Clone a BSP

1. In Visual Studio 2005, open the Tools menu, click Platform Builder For CE 6.0,
and then click Clone BSP.

2. In the Clone Board Support Package window select Device Emulator: ARMV4I
as the Source BSP from the drop-down list.

3. Under New BSP Information enter the information shown in Table 5–12 (see
also Figure 5–10):

4. Select Open New BSP Catalog File In Catalog Editor check box and then click
Clone.

5. Verify that Platform Builder clones the Device Emulator BSP successfully, and
then in the corresponding Clone BSP dialog box, click OK.

6. Verify that Visual Studio automatically opens the DeviceEmulatorClone.pbcxml
catalog file. Close the catalog editor without making any changes.

Table 5-12 New BSP details

Parameter Value

Name DeviceEmulatorClone

Description Clone of the Device Emulator BSP

Platform Directory DeviceEmulatorClone

Vendor Contoso Ltd.

Version 0.0

Lab 5: Adapting a Board Support Package 235

Figure 5-10 BSP cloning information

� Create a Run-Time Image

1. In order to validate our cloned BSP, create a new OS design based on the
DeviceEmulatorClone BSP. Call the OS design DeviceEmulatorCloneTest, as
illustrated in Figure 5–11 (see also Lab 1 in Chapter 1 for details on how to
accomplish this step).

2. Choose Industrial Device in the Design Templates and Industrial Controller in
the Design Template Variants. Accept the default options in the subsequent
steps of the wizard.

3. After Platform Builder generates the DeviceEmulatorCloneTest project, verify
the OS design by examining the catalog items in Catalog Items View.

4. Verify that the Debug build configuration is enabled by opening Configuration
Manager on the Build menu and seeing if the Active Solution Configuration list
box displays DeviceEmulatorClone ARMV4I Debug.

5. On the Build menu, click Build Solution.

6. After the build is completed, configure the Connectivity Options to use the
Device Emulator.

7. Open the Target menu and click Attach Device to download the run-time image
to the Device Emulator and start Windows Embedded CE. Notice the debug
messages in the Output window of Visual Studio 2005. Wait until the device has
started up completely.

236 Chapter 5 Customizing a Board Support Package

Figure 5-11 A new OS design based on the DeviceEmulatorClone BSP

NOTE BSP adaptation

Device Emulator emulates the same hardware platform for both the reference BSP and the
cloned BSP. For this reason, the new run-time image runs on Device Emulator without further
adaption. In practice, however, the underlying hardware is different in most cases, requiring BSP
adaptations to start CE successfully.

� Customize the BSP

1. Detach from the target device and close Device Emulator.

2. In Visual Studio, open the init.c source code file that you can find in the
%_PLATFORMROOT%\DeviceEmulatorClone\Src\Oal\Oallib folder, as
illustrated in Figure 5–12.

3. Search for the OAL function OEMGetExtensionDRAM and add the following
line of code to print a debug message in the Output window of Visual Studio
during system startup.

BOOL

OEMGetExtensionDRAM(

 LPDWORD lpMemStart,

 LPDWORD lpMemLen

)

Lab 5: Adapting a Board Support Package 237

{

...

 OALMSG(OAL_FUNC, (L"++OEMGetExtensionDRAM\r\n"));

 // Test message to confirm that our modifications are part of run-time image.

 OALMSG(1,(TEXT("This modification is part of the run-time image.\r\n")));

...

}

4. Rebuild the run-time image to includes the changes, and then attach to the
device again in order to download and start the new run-time image in Device
Emulator. Verify that Windows Embedded CE prints the debug message in the
Output window.

Figure 5-12 DeviceEmulatorClone BSP customization

238 Chapter 5 Review

Chapter Review
The adaptation of a BSP is one of the most complicated and critical development tasks
that OEMs face when porting Windows Embedded CE 6.0 to a new hardware
platform. To facilitate this undertaking, Microsoft provides reference BSPs with
Platform Builder and encourages OEMs to start the development process by cloning
the most suitable BSP. The PQOAL–based BSPs follow a well-organized folder and file
structure to separate platform-agnostic and platform-specific code by processor type
and OAL function so that OEMs can focus on platform-specific implementation
details without getting side tracked by general aspects of the kernel or operating
system.

OEM developers should consider the following recommendations to ensure a
successful adaptation of a BSP:

■ Study the Windows Embedded CE reference BSPs Windows Embedded CE
BSPs follow a well-defined architecture with close relationships to the kernel.
This makes it necessary to implement numerous APIs that the kernel requires to
run the operating system. Knowing these APIs and their purpose is very
important. The PQOAL–based architecture is continually evolving.

■ Clone a BSP Avoid writing a new BSP completely from scratch. Instead, clone
a BSP to jump start the adaptation process. By reusing as much code as possible
from a reference BSP, you not only shorten development time, but also increase
the quality of your solution and provide a solid foundation for efficient handling
of future upgrades.

■ Boot loader and BLCOMMON Use BLCOMMON and related libraries when
implementing a boot loader because these libraries provide useful hardware-
independent features for downloading run-time images and enabling users to
interact with the target device during the startup process.

■ Memory and BSPs Make sure you thoroughly understand how Windows
Embedded CE 6.0 deals with physical and virtual memory. Configure <Boot
loader>.bib and Config.bib files to provide accurate information about available
m e m o r y to t he ope r a t i n g s y s t e m a n d a d ju s t t he e nt r i e s i n t he
OEMAddressTable, if necessary. Keep in mind that you cannot directly access
physical memory in Windows Embedded CE. Use the correct memory-mapping
APIs to map physical memory addresses to virtual memory addresses.

Chapter 5 Review 239

■ Implement power management Implement the OEMIdle function to enable
the system to switch the CPU into Idle mode. Consider implementing
OEMPowerOff as well, if your platform supports power state transitions into
Suspend mode in response to user actions or critical battery levels.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ PQOAL

■ Boot loader

■ KernelIoControl

■ Driver globals

Suggested Practices
To help you successfully master the exam objectives presented in this chapter,
complete the following tasks.

Access the Hardware Registers of a Peripheral Device
Implement a device driver for peripheral hardware and access the hardware registers
by using the MmMapIoSpace API to interact with the device. Note that it is not
possible to call MmMapIoSpace from an application.

NOTE Emulator restrictions

Because Device Emulator emulates an ARM processor in software, you cannot access hardware
devices. You must use a genuine hardware platform to perform this suggested practice.

Reorganize Platform Memory Mappings
By modifying the Config.bib file of the cloned Device Emulator BSB, you can
increasingly reduce the available RAM on the system and study the impact in terms of
available memory on the system by using the memory information APIs or Platform
Builder tools.

241

Chapter 6

Developing Device Drivers

Device drivers are components that enable the operating system (OS) and user
applications to interact with peripheral hardware that is integrated or attached to a
target device, such as the Peripheral Component Interconnect (PCI) bus, keyboard,
mouse, serial ports, display, network adapter, and storage devices. Rather than
accessing the hardware directly, the operating system loads the corresponding device
drivers, and then uses the functions and input/output (I/O) services that these
drivers provide to carry out actions on the device. In this way, the Microsoft®
Windows® Embedded CE 6.0 R2 architecture remains flexible, extensible, and
independent of the underlying hardware details. The device drivers contain the
hardware-specific code, and you can implement custom drivers in addition to the
standard drivers that ship with CE to support additional peripherals. In fact, device
drivers are the largest part of the Board Support Package (BSP) for an OS design.
However, it is also important to keep in mind that poorly implemented drivers can
ruin an otherwise reliable system. When developing device drivers, it is imperative to
follow strict coding practices and test the components thoroughly in various system
configurations. This chapter discusses best practices for writing device drivers with
proper code structures, developing a secure and well-designed configuration user
interface, ensuring reliability even after prolonged use, and supporting multiple
power management features.

Exam objectives in this chapter:

■ Loading and using device drivers on Windows Embedded CE

■ Managing interrupts on the system

■ Understanding memory access and memory handling

■ Enhancing driver portability and system integration

242 Chapter 6 Developing Device Drivers

Before You Begin
■ To complete the lessons in this chapter, you must have the following:

■ At least some basic knowledge about Windows Embedded CE software
development, including fundamental concepts related to driver development,
such as I/O control (IOCTL) and Direct Memory Access (DMA).

■ An understanding of interrupt handling and how to respond to interrupts in a
device driver.

■ Familiarity with memory management in C and C++, as well as and knowledge
of how to avoid memory leaks.

■ A development computer with Microsoft Visual Studio® 2005 Service Pack 1 and
Platform Builder for Windows Embedded CE 6.0 R2 installed.

Lesson 1: Understanding Device Driver Basics 243

Lesson 1: Understanding Device Driver Basics
On Windows Embedded CE, a device driver is a dynamic-link library (DLL) that
provides a layer of abstraction between the underlying hardware, OS, and
applications running on the target device. The driver exposes a set of known
functions and provides the logic to initialize and communicate with the hardware.
Software developers can then call the driver’s functions in their applications to
interact with the hardware. If a device driver adheres to a well-known application
programming interface (API) such as Device Driver Interface (DDI), you can load the
driver as part of the operating system, such as a display driver or a driver for a storage
device. Without having to know details about the physical hardware, applications can
then call standard Windows API functions, such as ReadFile or WriteFile, to use the
peripheral device. You can support different types of peripherals by adding different
drivers to the OS design without having to reprogram your applications.

After this lesson, you will be able to:

■ Differentiate between native and stream drivers.

■ Describe the advantages and disadvantages of monolithic and layered driver archi-
tectures.

Estimated lesson time: 15 minutes.

Native and Stream Drivers
A Windows Embedded CE device driver is a DLL that exposes the standard DllMain
function as the entry point, so that a parent process can load the driver by calling
LoadLibrary or LoadDriver. Drivers loaded by means of LoadLibrary can be paged
out, but the operating system does not page out drivers loaded through LoadDriver.

While all drivers expose the DllMain entry point, Windows Embedded CE supports
two different types of drivers: native drivers and stream drivers. Native CE drivers
typically support input and output peripherals, such as display drivers, keyboard
drivers, and touchscreen drivers. The Graphics, Windowing, and Events Subsystem
(GWES) loads and manages these drivers directly. Native drivers implement specific
functions according to their purpose, which GWES can determine by calling the
GetProcAddress API. GetProcAddress returns a pointer to the desired function or
NULL if the driver does not support the function.

244 Chapter 6 Developing Device Drivers

Stream drivers, on the other hand, expose a well-known set of functions that enable
Device Manager to load and manage these drivers. For Device Manager to interact
with a stream driver, the driver must implement the Init, Deinit, Open, Close, Read,
Write, Seek, and IOControl functions. In many stream drivers, the Read, Write, and
Seek functions provide access to the stream content, yet not all peripherals are stream
devices. If the device has special requirements beyond Read, Write, and Seek, you can
use the IOControl function to implement the required functionality. The IOControl
function is a universal function that can accommodate any special needs of a stream
device driver. For example, you can extend a driver’s functionality by passing a
custom IOCTL command code and input and output buffers.

NOTE Native driver interface

Native drivers must implement different types of interfaces depending on the nature of the
driver. For complete information about the supported driver types, see the section “Windows
Embedded CE Drivers” in the Windows Embedded CE 6.0 Documentation, available on the
Microsoft MSDN® Web site at http://msdn2.microsoft.com/en-us/library/aa930800.aspx.

Monolithic vs. Layered Driver Architecture
Native and stream drivers only differ in terms of the APIs they expose. You can load
both types of drivers during system startup or on demand, and both types can use a
monolithic or layered design, as illustrated in Figure 6–1.

Lesson 1: Understanding Device Driver Basics 245

Figure 6-1 Monolithic and layered driver architectures

Monolithic Drivers
A monolithic driver relies on a single DLL to implement both the interface to the
operating system and applications, and the logic to the hardware. The development
costs for monolithic drivers are generally higher than for layered drivers, yet despite
this disadvantage, monolithic drivers also have advantages. The primary advantage is
a performance gain by avoiding additional function calls between separate layers in
the driver architecture. Memory requirements are also slightly lower in comparison to
layered drivers. A monolithic driver might also be the right choice for uncommon,
custom hardware. If no layered driver code exists that you could reuse, and if this is a
unique driver project, you might find it advantageous to implement a driver in a
monolithic architecture. This is especially true if reusable monolithic source code is
available.

Layered Drivers
In order to facilitate code reuse and lower development overhead and costs, Windows
Embedded CE supports a layered driver architecture based on model device driver
(MDD) and platform device driver (PDD). MDD and PDD provide an additional
abstraction layer for driver updates and to accelerate the development of device

OS

Device Driver
Interface (DDI)

Monolithic
Driver

(Single DLL)

Device Driver
Interface (DDI)

Layered Driver

Model Device
Driver (MDD)

Platform Device
Driver (MDD)

Graphics, Windowing and Events Subsystem
(GWES)

Applications

Device Manager

Hardware

Monolithic
Stream
Driver

(Single DLL)

Layered Stream Driver

Model Device
Driver (MDD)

Platform Device
Driver (MDD)

Stream Interface Stream Interface

246 Chapter 6 Developing Device Drivers

drivers for new hardware. The MDD layer contains the interface to the operating
system and the applications. On the hardware side, MDD interfaces with the PDD
layer. The PDD layer implements the actual functions to communicate with the
hardware.

When porting a layered driver to new hardware, you generally do not need to modify
the code in the MDD layer. It is also less complicated to duplicate an existing layered
driver and add or remove functionality than to create a new driver from scratch. Many
of the drivers included in Windows Embedded CE take advantage of the layered
driver architecture.

NOTE MDD/PDD architecture and driver updates

The MDD/PDD architecture can help driver developers save time during the development of
driver updates, such as providing quick fix engineering (QFE) fixes to customers. Restricting
modifications to the PDD layer increases development efficiencies.

Lesson Summary
Windows Embedded CE supports native and stream drivers. Native drivers are the
best choice for any devices that are not stream devices. For example, a display device
driver must be able to process data in arbitrary patterns and is therefore a good
candidate for a native driver. Other devices, such as storage hardware and serial ports,
are good candidates for stream drivers because these devices handle data primarily in
the form of ordered streams of bytes as if they were files. Both native and stream
drivers can use either the monolithic or layered driver design. In general, it is
advantageous to use the layered architecture based on MDD and PDD because it
facilitates code reuse and the development of driver updates. Monolithic drivers
might be the right choice if you want to avoid the additional function calls between
MDD and PDD for performance reasons.

Lesson 2: Implementing a Stream Interface Driver 247

Lesson 2: Implementing a Stream Interface Driver
On Windows Embedded CE, a stream driver is a device driver that implements the
stream interface API. Regardless of hardware specifics, all CE stream drivers expose
the stream interface functions to the operating system so the Device Manager of
Windows Embedded CE can load and manage these drivers. As the name implies,
stream drivers are suitable for I/O devices that act as sources or sinks of streams of
data, such as integrated hardware components and peripheral devices. It is also
possible for a stream driver to access other drivers to provide applications with more
convenient access to the underlying hardware. In any case, you need to know the
stream interface functions and how to implement them if you want to develop a fully
functional and reliable stream driver.

After this lesson, you will be able to:

■ Understand the purpose of Device Manager.

■ Identify stream driver requirements.

■ Implement and use a stream driver.

Estimated lesson time: 40 minutes.

Device Manager
The Windows Embedded CE Device Manager is the OS component that manages the
stream device drivers on the system. The OAL (Oal.exe) loads the kernel (Kernel.dll),
and the kernel loads Device Manager during the boot process. Specifically, the kernel
loads the Device Manager shell (Device.dll), which in turn loads the actual core
Device Manager code (Devmgr.dll), which again is in charge of loading, unloading,
and interfacing with stream drivers, as illustrated in Figure 6–2.

Stream drivers can be loaded as part of the operating system at boot time or on
demand when the corresponding hardware is connected in a Plug and Play fashion.
User applications can then use the stream drivers through file system APIs, such as
ReadFile and WriteFile, or by means of DeviceIoControl calls. Stream drivers that
Device Manager exposes through the file system appear to applications as regular file
resources with special file names. The DeviceIoControl function, on the other hand,
enables applications to perform direct input and output operations. However,
applications interact with the stream drivers indirectly through Device Manager in
both cases.

248 Chapter 6 Developing Device Drivers

Figure 6-2 The Device Manager in Windows Embedded CE 6.0

Driver Naming Conventions
For an application to use a stream driver through the file system, the stream driver
must be presented as a file resource so that the application can specify the device file
in a CreateFile call to get a handle to the device. Having obtained the handle, the
application can then use ReadFile or WriteFile to perform I/O operations, which
Device Manager translates into corresponding calls to stream interface functions to
perform the desired read and write actions. For Windows Embedded CE 6.0 to
recognize stream device resources and redirect file I/O operations to the appropriate
stream drive, stream drivers must follow a special naming convention that
distinguishes these resources from ordinary files.

Windows Embedded CE 6.0 supports the following naming conventions for stream
drivers:

■ Legacy names The classical naming convention for stream drivers consists of
three upper case letters, a digit, and a colon. The format is XXX[0–9]:, where XXX
stands for the three-letter driver name and [0–9] is the index of the driver as
specified in the driver’s registry settings (see Lesson 3, “Configuring and
Loading a Driver”). Because the driver index has only one digit, legacy names

User Applications

File System
Device Manager

CE Kernel

Hardware

Calls XXX_stream Functions

OEM Adaptation Layer (OAL)
Device Driver

(Stream Interface)

Obtains a Handle Via CreateFile Application Calls DeviceIoControl

Lesson 2: Implementing a Stream Interface Driver 249

only support up to ten instances of a stream driver. The first instance
corresponds to index 1, the ninth instance uses index 9, and the tenth instance
refers to index 0. For example, CreateFile(L"COM1:"…) accesses the stream
driver for the first serial port by using the legacy name COM1:.

NOTE Legacy name limitation

The legacy naming convention does not support more than ten instances per stream driver.

■ Device names To access a stream driver with an index of ten or higher, you can
use the device name instead of the legacy name. The device name conforms to
the format \$device\XXX[index], where \$device\ is a namespace that
indicates that this is a device name, XXX stands for the three-letter driver name
and [index] is the index of the driver. The index can have multiple digits. For
example, CreateFile(L"\$device\COM11"…) would access the stream driver for
the eleventh serial port. Stream drivers with a legacy name can also be accessed,
such as CreateFile(L"\$device\COM1"…).

NOTE Legacy and device name access

Although legacy names and device names differ in format and supported range of driver
instances, CreateFile returns the same handle with access to the same stream driver in
both cases.

■ Bus name Stream drivers for devices on a bus, such as Personal Computer
Memory Card International Association (PCMCIA) or Universal Serial Bus
(USB), correspond to bus names that the relevant bus driver passes to Device
Manager when enumerating the drivers available on the bus. Bus names relate to
the underlying bus structure. The general format is \$bus\BUSNAME_[bus
number]_[device number]_[function number], where \$bus\ is a namespace
that indicates that this is a bus name, BUSNAME refers to the name or type of the
bus, and [bus number], [device number], and [function number] are bus-specific
identifiers. For example, CreateFile(L"\$ bus\PCMCIA_0_0_0"…) accesses
device 0, function 0, on PCMCIA bus 0, which might correspond to a serial port.

NOTE Bus name access

Bus names are primarily used to obtain handles for unloading and reloading bus drivers
and for power management, but not for data read and write operations.

250 Chapter 6 Developing Device Drivers

Stream Interface API
For Device Manager to load and manage a stream driver successfully, the stream
driver must export a common interface, generally referred to as the stream interface.
The stream interface consists of 12 functions to initialize and open the device, read
and write data, power up or down the device, and close and de-initialize the device, as
summarized in Table 6–1.

Table 6-1 Stream interface functions

Function Name Description

XXX_Init Device Manager calls this function to load a driver during the
boot process or in answer to calls to ActivateDeviceEx in
order to initialize the hardware and any memory structures
used by the device.

XXX_PreDeinit Device Manager calls this function before calling
XXX_Deinit to give the driver a chance to wake sleeping
threads and invalidate open handles in order to accelerate
the de-initialization process. Applications do not call this
function.

XXX_Deinit Device Manager calls this function to de-initialize and de-
allocate memory structures and other resources in response
to a DeActivateDevice call after deactivating and unloading a
driver.

XXX_Open Device Manager calls this function when an application
requests access to the device by calling CreateFile for
reading, writing, or both.

XXX_PreClose Device Manager calls this function to give the driver a chance
to invalidate handles and wake sleeping threads in order to
accelerate the unloading process. Applications do not call
this function.

XXX_Close Device Manager calls this function when an application
closes an open instance of the driver, such as by calling the
CloseHandle function. The stream driver must de-allocate all
memory and resources allocated during the previous
XXX_Open call.

Lesson 2: Implementing a Stream Interface Driver 251

XXX_Read Device Manager calls this function in response to a ReadFile
call to read data from the device and pass it to the caller.
Even if the device does not provide any data to read, the
stream device driver must implement this function to be
compatible with Device Manager.

XXX_Write Device Manager calls this function in response to a WriteFile
call to pass data from the caller to the device. Similar to
XXX_Read, XXX_Write is mandatory but can be empty if the
underlying device does not support write operations, such
as an input-only communications port.

XXX_Seek Device Manager calls this function in response to a
SetFilePointer call to move the data pointer to a particular
point in the data stream for reading or writing. Similar to
XXX_Read and XXX_Write, this function can be empty but
must be exported to be compatible with Device Manager.

XXX_IOControl Device Manager calls this function in response to a
DeviceIoControl call to perform device-specific control
tasks. For example, power management features rely on
DeviceIoControl calls if the driver advertises a power
management interface, such as to query power capabilities
and manage the power status through the IOCTLs
IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY,
and IOCTL_POWER_SET. Applications can also use the
DeviceIoControl function to read and write data in device
drivers that do not use XXX_Write and XXX_Read. This is a
common approach in many stream drivers.

Table 6-1 Stream interface functions (Continued)

Function Name Description

252 Chapter 6 Developing Device Drivers

NOTE XXX prefix

In the function names, the prefix XXX is a placeholder that refers to the three-letter driver name.
You need to replace this prefix with the actual name in the driver code, such as COM_Init for a
driver called COM, or SPI_Init for a Serial Peripheral Interface (SPI) driver.

Device Driver Context
Device Manager supports context management based on device context and open
context parameters, which Device Manager passes as DWORD values to the stream
driver with each function call. Context management is vital if a driver must allocate
and deallocate instance-specific resources, such as blocks of memory. It is important
to keep in mind that device drivers are DLLs, which implies that global variables and
other memory structures defined or allocated in the driver are shared by all driver
instances. Deallocating the wrong resources in response to an XXX_Close or
XXX_Deinit call can lead to memory leaks, application failures, and general system
instabilities.

XXX_PowerUp Device Manager calls this function when the operating
system comes out of a low power mode. Applications do not
call this function. This function executes in kernel mode, can
therefore not call external APIs, and must not be paged out
because the operating system is running in single-threaded,
non-paged mode. Microsoft recommends that drivers
implement power management based on Power Manager
and power management IOCTLs for suspend and resume
functionality in a driver.

XXX_PowerDown Device Manager calls this function when the operating
system transitions into suspend mode. Similar to XXX_
PowerUp, this function executes in kernel mode, can
therefore not call external APIs, and must not be paged out.
Applications do not call this function. Microsoft
recommends that drivers implement power management
based on Power Manager and power management IOCTLs.

Table 6-1 Stream interface functions (Continued)

Function Name Description

Lesson 2: Implementing a Stream Interface Driver 253

Stream drivers can manage context information per device driver instance based on
the following two levels:

1. Device context The driver initializes this context in the XXX_Init function.
This context is therefore also called the Init Context. Its primary purpose is to
help the driver manage resources related to hardware access. Device Manager
passes this context information to the XXX_Init, XXX_Open, XXX_PowerUp,
XXX_PowerDown, XXX_PreDeinit and XXX_Deinit functions.

2. Open context The driver initializes this second context in the XXX_Open
function. Each time an application calls CreateFile for a stream driver, the stream
driver creates a new open context. The open context then enables the stream
driver to associate data pointers and other resources with each opened driver
instance. Device Manager passes the device context to the stream driver in the
XXX_Open function so that the driver can store a reference to the device context
in the open context. In this way, the driver can retain access to the device context
information in subsequent calls, such as XXX_Read, XXX_Write, XXX_Seek,
XXX_IOControl, XXX_PreClose and XXX_Close. Device Manager only passes
the open context to these functions in the form of a DWORD parameter.

The following code listing illustrates how to initialize a device context for a sample
driver with the driver name SMP (such as SMP1:):

DWORD SMP_Init(LPCTSTR pContext, LPCVOID lpvBusContext)

{

 T_DRIVERINIT_STRUCTURE *pDeviceContext = (T_DRIVERINIT_STRUCTURE *)

 LocalAlloc(LMEM_ZEROINIT|LMEM_FIXED, sizeof(T_DRIVERINIT_STRUCTURE));

 if (pDeviceContext == NULL)

 {

 DEBUGMSG(ZONE_ERROR,(L" SMP: ERROR: Cannot allocate memory "

 + "for sample driver’s device context.\r\n"));

 // Return 0 if the driver failed to initialize.

 return 0;

 }

 // Perform system intialization...

 pDeviceContext->dwOpenCount = 0;

 DEBUGMSG(ZONE_INIT,(L"SMP: Sample driver initialized.\r\n"));

 return (DWORD)pDeviceContext;

}

254 Chapter 6 Developing Device Drivers

Building a Device Driver
To create a device driver, you can add a subproject for a Windows Embedded CE DLL
to your OS design, but the most common way to do it is to add the device driver’s
source files inside the Drivers folder of the Board Support Package (BSP). For detailed
information about configuring Windows Embedded CE subprojects, see Chapter 1,
“Customizing the Operating System Design.”

A good starting point for a device driver is A Simple Windows Embedded CE DLL
Subproject, which you can select on the Auto-Generated Subproject Files page in the
Windows Embedded CE Subproject Wizard. It automatically creates a source code
file with a definition for the DllMain entry point for the DLL, various parameter files,
such as empty module-definition (.def) and registry (.reg) files, and preconfigures the
Sources file to build the target DLL. For more detailed information about parameter
files and the Sources file, see Chapter 2, “Building and Deploying a Run-Time Image.”

Implementing Stream Functions

Having created the DLL subproject, you can open the source code file in Visual Studio
and add the required functions to implement the stream interface and required driver
functionality. The following code listing shows the definition of the stream interface
functions.

// SampleDriver.cpp : Defines the entry point for the DLL application.

//

#include "stdafx.h"

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved)

{

 return TRUE;

}

DWORD SMP_Init(LPCTSTR pContext, LPCVOID lpvBusContext)

{

 // Implement device context initialization code here.

 return 0x1;

}

BOOL SMP_Deinit(DWORD hDeviceContext)

{

 // Implement code to close the device context here.

 return TRUE;

}

Lesson 2: Implementing a Stream Interface Driver 255

DWORD SMP_Open(DWORD hDeviceContext, DWORD AccessCode, DWORD ShareMode)

{

 // Implement open context initialization code here.

 return 0x2;

}

BOOL SMP_Close(DWORD hOpenContext)

{

 // Implement code to close the open context here.

 return TRUE;

}

DWORD SMP_Write(DWORD hOpenContext, LPCVOID pBuffer, DWORD Count)

{

 // Implement the code to write to the stream device here.

 return Count;

}

DWORD SMP_Read(DWORD hOpenContext, LPVOID pBuffer, DWORD Count)

{

 // Implement the code to read from the stream device here.

 return Count;

}

BOOL SMP_IOControl(DWORD hOpenContext, DWORD dwCode,

 PBYTE pBufIn, DWORD dwLenIn, PBYTE pBufOut,

 DWORD dwLenOut, PDWORD pdwActualOut)

{

 // Implement code to handle advanced driver actions here.

 return TRUE;

}

void SMP_PowerUp(DWORD hDeviceContext)

{

 // Implement power management code here or use IO Control.

 return;

}

void SMP_PowerDown(DWORD hDeviceContext)

{

 // Implement power management code here or use IO Control.

 return;

}

Exporting Stream Functions
Making the stream functions in the driver DLL accessible to external applications
requires the linker to export the functions during the build process. C++ provides
several options to accomplish this, yet for driver DLLs compatible with Device

256 Chapter 6 Developing Device Drivers

Manager, you must export the functions by defining them in the .def file of the DLL
subproject. The linker uses the .def file to determine which functions to export and
how to do so. For a standard stream driver, you must export the stream interface
functions using the prefix that you specify in the driver’s source code and registry
settings. Figure 6–3 shows a sample .def file for the stream interface skeleton listed in
the previous section.

Figure 6-3 A sample .def file for a stream driver

Sources File
Prior to building the newly created stream driver, you should also check the Sources
file in the root folder of the DLL subproject to ensure that it includes all necessary files
in the build process. As mentioned in Chapter 2, the Sources file configures the
compiler and linker to build the desired binary files. Table 6–2 summarizes the most
important Sources file directives for device drivers.

Lesson 2: Implementing a Stream Interface Driver 257

Opening and Closing a Stream Driver by Using the File API
To access a stream driver, an application can use the CreateFile function and specify
the desired device name. The following example illustrates how to open a driver
called SMP1: for reading and writing. It is important to note, however, that Device
Manager must already have loaded the driver, such as during the boot process. Lesson
3 later in this chapter provides detailed information about configuring and loading
device drivers.

// Open the driver, which results in a call to the SMP_Open function

hSampleDriver = CreateFile(L"SMP1:",

 GENERIC_READ | GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

if (hSampleDriver == INVALID_HANDLE_VALUE)

{

 ERRORMSG(1,(TEXT("Unable to open the driver.\r\n"));

 return FALSE;

}

Table 6-2 Important Sources file directives for device drivers

Directive Description

WINCEOEM=1 Causes additional header files and import
libraries from the %_WINCEROOT%\Public tree
to be included to enable the driver to make
platform-dependent function calls, such as
KernelIoControl, InterruptInitialize, and
InterruptDone.

TARGETTYPE=DYNLINK Instructs the Build tool to create a DLL.

DEFFILE=<Driver Def File
Name>.def

References the module-definition file that defines
the exported DLL functions.

DLLENTRY=<DLL Main Entry
Point>

Specifies the function that is called when
processes and threads attach and detach to and
from the driver DLL (Process Attach, Process
Detach, Thread Attach, and Thread Detach).

258 Chapter 6 Developing Device Drivers

// Access the driver and perform read,

// write, and seek operations as required.

// Close the driver

CloseHandle(hSampleDriver);

Dynamically Loading a Driver
As mentioned earlier in this lesson, an application can also communicate with a
stream device driver after calling the ActivateDevice or ActivateDeviceEx function.
ActivateDeviceEx offers more flexibility than ActivateDevice, yet both functions cause
Device Manager to load the stream driver and call the driver’s XXX_Init function. In
fact, ActivateDevice calls ActivateDeviceEx. Note, however, that ActivateDeviceEx
does not provide access to an already loaded driver. The primary purpose of the
ActivateDeviceEx function is to read a driver-specific registry key specified in the
function call to determine the DLL name, device prefix, index, and other values, add
the relevant values to the active device list, and then load the device driver into the
Device Manager process space. The function call returns a handle that the application
can later use to unload the driver in a call to the DeactivateDevice function.

ActivateDeviceEx replaces the older RegisterDevice function as a method to load a
driver on demand, as illustrated in the following code sample:

// Ask Device Manager to load the driver for which the definition

// is located at HKLM\Drivers\ Sample in the registry.

hActiveDriver = ActivateDeviceEx(L"\\Drivers\\Sample", NULL, 0, NULL);

if (hActiveDriver == INVALID_HANDLE_VALUE)

{

 ERRORMSG(1, (L"Unable to load driver"));

 return -1;

}

// Once the driver is lodaded, applications can open the driver

hDriver = CreateFile (L"SMP1:",

 GENERIC_READ| GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

if (hDriver == INVALID_HANDLE_VALUE)

{

 ERRORMSG(1, (TEXT("Unable to open Sample (SMP) driver")));

 return 0;

}

Lesson 2: Implementing a Stream Interface Driver 259

//Insert code that uses the driver here

// Close the driver when access is no longer needed

if (hDriver != INVALID_HANDLE_VALUE)

{

 bRet = CloseHandle(hDriver);

 if (bRet == FALSE)

 {

 ERRORMSG(1, (TEXT("Unable to close SMP driver")));

 }

}

// Manually unload the driver from the system using Device Manager

if (hActiveDriver != INVALID_HANDLE_VALUE)

{

 bRet = DeactivateDevice(hActiveDriver);

 if (bRet == FALSE)

 {

 ERRORMSG(1, (TEXT("Unable to unload SMP driver ")));

 }

}

NOTE Automatic vs. dynamic loading of drivers

Calling ActivateDeviceEx to load a driver has the same result as loading the driver automatically
during the boot process through parameters defined in the HKEY_LOCAL_MACHINE\Driv-
ers\BuiltIn key. The BuiltIn registry key is covered in more detail in Lesson 3 later in this chapter.

Lesson Summary
Stream drivers are Windows Embedded CE drivers that implement the stream
interface API. The stream interface enables Device Manager to load and manage these
drivers, and applications can use standard file system functions to access these
drivers and perform I/O operations. To present a stream driver as a file resource
accessible through a CreateFile call, the name of the stream driver must follow a
special naming convention that distinguishes the device resource from ordinary files.
Legacy names (such as COM1:) have a limitation of ten instances per driver because
they include only a single-digit instance identification. If you must support more than
ten driver instances on a target device, use a device name instead (such as
\$device\COM1).

Because Device Manager can load a single driver multiple times to satisfy the requests
from different processes and threads, stream drivers must implement context
management. Windows Embedded CE knows two context levels for device drivers,
device context and open context, which the operating system passes in each

260 Chapter 6 Developing Device Drivers

appropriate function call to the driver so that the driver can associate internal
resources and allocated memory regions with each caller.

The stream interface consists of 12 functions: XXX_Init, XXX_Open, XXX_Read,
XXX_Write, XXX_Seek, XXX_IOControl, XXX_PowerUp, XXX_PowerDown,
XXX_PreClose, XXX_Close, XXX_PreDeinit, and XXX_Deinit. Not all functions are
mandatory (such as XXX_PreClose and XXX_PreDeinit), yet any functions that the
stream device driver implements must be exposed from the driver DLL to Device
Manager. To export these functions, you must define them in the .def file of the DLL
subproject. You should also adjust the DLL subproject’s Sources file to ensure that the
driver DLL can make platform-dependent function calls.

Lesson 3: Configuring and Loading a Driver 261

Lesson 3: Configuring and Loading a Driver
In general, you have two options to load a stream driver under Windows Embedded
CE 6.0. You can instruct Device Manager to load the driver automatically during the
boot sequence by configuring driver settings in the HKEY_LOCAL_MACHINE
\Drivers\BuiltIn registry key, or you can load the driver dynamically through a direct
call to ActivateDeviceEx. Either way, Device Manager can load the device driver with
the same registry flags and settings. The key difference is that you receive a handle to
the driver when using ActivateDeviceEx, which you can use later in a call to
DeactivateDevice. Especially during the development stage, it might be advantageous
to load a driver dynamically through ActivateDeviceEx so that you can unload the
driver, install an updated version, and then reload the driver without having to restart
the operating system. You can also use DeactivateDevice to unload drivers loaded
automatically based on entries under the BuiltIn registry key, but you cannot reload
them without calling ActivateDeviceEx directly.

After this lesson, you will be able to:

■ Identify the mandatory registry settings for a device driver.

■ Access the registry settings from within a driver.

■ Load a driver at startup or on demand in an application.

■ Load a driver in user space or kernel space.

Estimated lesson time: 25minutes.

Device Driver Load Procedure
Whether you load a device driver statically or dynamically, the ActivateDeviceEx
function is always involved. A dedicated driver named the Bus Enumerator
(BusEnum) cal ls Act ivateDeviceEx for ever y dr iver regis tered under
HKEY_LOCAL_MACHINE\Drivers\BuiltIn just as you can call ActivateDeviceEx
directly, passing in an alternate registry path for the driver settings in the lpszDevKey
parameter.

Device Manager uses the following procedure to load device drivers at boot time:

1. Device Manager reads the HKEY_LOCAL_MACHINE\Drivers\RootKey entry
to determine the location of the device driver entries in the registry. The default
value of the RootKey entry is Drivers\BuiltIn.

262 Chapter 6 Developing Device Drivers

2. Device Manager reads the Dll registry value at the location specified in the
RootKey location (HKEY_LOCAL_MACHINE\Drivers\BuiltIn) to determine
the enumerator DLL to load. By default, this is the bus enumerator
(BusEnum.dll). The bus enumerator is a stream driver that exports the Init and
Deinit functions.

3. The bus enumerator runs at startup to scan the RootKey registry location for
subkeys that refer to additional buses and devices. It can be run again later with
a different RootKey to load more drivers. The bus enumerator examines the
Order value in each subkey to determine the load order.

4. Starting with the lowest Order values, the bus enumerator iterates through the
subkeys and calls ActivateDeviceEx passing in the current driver’s registry path
(that is, HKEY_LOCAL_MACHINE\Drivers\BuiltIn\<DriverName>).

5. ActivateDeviceEx loads the driver DLL registered in the DLL value located in the
driver’s subkey, and then creates a subkey for the driver under the
HKEY_LOCAL_MACHINE\Drivers\Active registry key to keep track of all
currently loaded drivers.

Figure 6–4 shows a typical registration under the HKEY_LOCAL_MACHINE
\Drivers\BuiltIn registry key for an audio device driver.

Figure 6-4 An audio device driver registration

Lesson 3: Configuring and Loading a Driver 263

Registry Settings to Load Device Drivers
If you use ActivateDeviceEx to load your driver dynamically, you are not required to
place the driver’s registry settings in a subkey under HKEY_LOCAL_MACHINE
\Drivers\BuiltIn. You can use an arbitrary path, such as HKEY_LOCAL_MACHINE
\SampleDriver. However, the registry values for the driver are the same in both cases.
Table 6–3 lists general registry entries that you can specify for a device driver in the
driver’s registry subkey (see Figure 6–4 for sample values).

Table 6-3 General registry entries for device drivers

Registry Entry Type Description

Prefix REG_SZ A string value that contains the driver’s
three-letter name. This is the value that
replaces XXX in the stream interface
functions. Applications also use this prefix
to open a context of the driver through
CreateFile.

Dll REG_SZ This is the name of the DLL that Device
Manager loads to load the driver.

Note that this is the only mandatory registry
entry for a driver.

Index REG_DWORD This is the number appended to the driver
prefix to create the driver’s file name. For
example, if this value is 1, applications can
access this driver through a call to
CreateFile(L"XXX1:"…) or
CreateFile(L"\$device\XXX1"…).

Note that this value is optional. If you do not
define it, Device Manager assigns the next
available index value to the driver.

264 Chapter 6 Developing Device Drivers

Order REG_DWORD This is the order in which Device Manger
loads the driver. If this value is not specified,
the driver will be loaded last, at the same
time as other drivers with no order
specified. Drivers with the same Order value
start concurrently.

You should only configure this value to
enforce a sequential load order. For
example, a Global Positioning System (GPS)
driver might require a Universal
Asynchronous Receiver/Transmitter
(UART) driver to get access to the GPS data
through a serial port. In this case, it is
important to assign the UART driver a lower
Order value than the GPS driver so that the
UART driver starts first. This will enable the
GPS driver to access the UART driver during
its initialization.

IClass REG_MULTI_SZ This value can specify predefined device
interface globally unique identifiers
(GUIDs). To advertise an interface to Device
Manager, such as to support the Plug and
Play notification system and power
management capabilities, add the corres-
ponding interface GUIDs to the IClass value
or call AdvertiseInterface in the driver.

Table 6-3 General registry entries for device drivers (Continued)

Registry Entry Type Description

Lesson 3: Configuring and Loading a Driver 265

Flags REG_DWORD This value can contain the following flags:

■ DEVFLAGS_UNLOAD (0x0000 0001)
The driver unloads after a call to
XXX_Init.

■ DEVFLAGS_NOLOAD (0x0000 0004)
The driver cannot be loaded.

■ DEVFLAGS_NAKEDENTRIES
(0x0000 0008) The entry points of
the driver are Init, Open, IOControl,
and so forth, without any prefixes.

■ DEVFLAGS_BOOTPHASE_1
(0x0000 1000) The driver is loaded
during system phase 1 for systems with
multiple boot phases. This prevents the
driver from being loaded more than
one time during the boot process.

■ DEVFLAGS_IRQ_EXCLUSIVE
(0x0000 0100) The bus driver loads
this driver only when it has exclusive
access to the interrupt request (IRQ)
specified by the IRQ value.

■ DEVFLAGS_LOAD_AS_USERPROC
(0x0000 0010) Loads the driver in
user mode.

Table 6-3 General registry entries for device drivers (Continued)

Registry Entry Type Description

266 Chapter 6 Developing Device Drivers

NOTE Flags

For details about the Flags registry value, see the section “ActivateDeviceEx” in the Windows
Embedded CE 6.0 Documentation, available on the Microsoft MSDN Web site at http://
msdn2.microsoft.com/en-us/library/aa929596.aspx.

Registry Keys Related to Loaded Device Drivers
Apart from configurable registry entries in driver-specific subkeys, Device Manager
also maintains dynamic registry information in subkeys for loaded drivers under the
HKEY_LOCAL_MACHINE\Drivers\Active key. The subkeys correspond to
numerical values that the operating system assigns dynamically and increments for
each driver until the system is restarted. The number does not signify a particular
driver. For example, if you unload and reload a device driver, the operating system
assigns the next number to the driver and does not reuse the previous subkey.
Because you cannot ensure a reliable association between the subkey number and a
par t icular device dr iver, you should not edi t the driver entr ies in t he
HKEY_LOCAL_MACHINE\Drivers\Active key manually. However, you can create,
read, and write driver-specific registry keys at load time in a driver’s XXX_Init
function because Device Manager passes the path to the current Drivers\Active
subkey to the stream driver as the first parameter. The driver can open this registry
key using OpenDeviceKey.

Table 6–4 lists typical entries that the subkeys under Drivers\Active can contain.

UserProcGroup REG_DWORD Associates a driver marked with the
DEVFLAGS_LOAD_AS_USERPROC
(0x0000 0010) flag to load in user mode
with a user-mode driver host process group.
User-mode drivers that belong to the same
group are loaded by Device Manager in the
same host process instance. If this registry
entry does not exist, Device Manager loads
the user-mode driver into a new host
process instance.

Table 6-3 General registry entries for device drivers (Continued)

Registry Entry Type Description

Lesson 3: Configuring and Loading a Driver 267

NOTE Checking the Active key

By cal l ing the RequestDeviceNoti f icat ions funct ion with a device inter face GUID of
DEVCLASS_STREAM_GUID, an application can receive messages from Device Manager to iden-
tify loaded stream drivers programmatically. RequestDeviceNotifications supersedes the Enum-
Devices function.

Table 6-4 Registry entries for device drivers under the
HKEY_LOCAL_MACHINE\Drivers\Active key

Registry
Entry

Type Description

Hnd REG_DWORD The handle value for the loaded device driver. You
can obtain this DWORD value from the registry and
pass it in a call to DeactivateDevice in order to
unload the driver.

BusDriver REG_SZ The name of the driver’s bus.

BusName REG_SZ The name of the device’s bus.

DevID A unique device identifier from Device Manager.

FullName REG_SZ The name of the device if used with the $device
namespace.

Name REG_SZ The driver’s legacy device file name including
index, if a prefix is specified (not present for drivers
that do not specify a prefix).

Order REG_DWORD The same order value as in the driver’s registry key.

Key REG_SZ The registry path to the driver’s registry key.

PnpId REG_SZ The Plug and Play identifier string for PCMCIA
drivers.

Sckt REG_DWORD For PCMCIA drivers, describes the current socket
and function of the PC card.

268 Chapter 6 Developing Device Drivers

Kernel-Mode and User-Mode Drivers
Drivers can either run in the kernel memory space or in user memory space. In kernel
mode, drivers have full access to the hardware and kernel memory, although function
calls are generally limited to kernel APIs. Windows Embedded CE 6.0 runs drivers in
kernel mode, by default. On the other hand, drivers in user mode do not have direct
access to kernel memory. There are some performance penalties when running in
user mode, yet the advantage is that a driver failure in user mode only affects the
current process, whereas the failure of a kernel-mode driver can impair the entire
operating system. The system can generally recover more gracefully from the failure of
a user-mode driver.

NOTE Kernel driver restrictions

Kernel drivers cannot display a user interface directly in CE 6.0 R2. To use any user interface ele-
ments, developers must create a companion DLL that will be loaded into user-mode, then call
into this DLL with CeCallUserProc. For more information on CeCallUserProc, see the MSDN Web
page at http://msdn2.microsoft.com/en-us/library/aa915093.aspx.

User-Mode Drivers and the Reflector Service
In order to communicate with the underlying hardware and perform useful tasks,
user-mode drivers must be able to access system memory and privileged APIs
unavailable to standard user-mode processes. To facilitate this, Windows Embedded
CE 6.0 features a Reflector service, which runs in kernel mode, performs buffer
marshaling, and calls privileged memory management APIs on behalf of the user-
mode drivers. The Reflector service is transparent so that user-mode drivers can work
almost the same way as kernel-mode drivers without modifications. An exception to
this rule is a driver that uses kernel APIs that are not available in user mode. It is not
possible to run these types of kernel-mode drivers in user mode.

When an application calls ActivateDeviceEx, Device Manager loads the driver either
directly in kernel space or passes the request to the Reflector service, which in turn
starts a user mode driver host process (Udevice.exe) through a CreateProcess call.
The Flags registry entry in the driver’s registry key determines whether a driver
should run in user mode (DEVFLAGS_LOAD_AS_USERPROC flag). Having started
the required instance of Udevice.exe and user-mode driver, the Reflector service
forwards the XXX_Init call from Device Manager to the user-mode driver and returns
the return code from the user-mode driver back to Device Manager, as indicated in
Figure 6–5. The same proxy principle also applies to all other stream functions.

Lesson 3: Configuring and Loading a Driver 269

Figure 6-5 User-mode drivers, kernel-mode drivers, and the Reflector service

User-Mode Drivers Registry Settings
On Windows Embedded CE 6.0, you can run multiple user-mode drivers in a single
host process or have multiple host processes enabled on the system. Drivers grouped
in a single Udevice.exe instance share the same process space, which is particularly
useful for drivers that depend on each other. However, drivers in the same process
space can affect each other’s stability. For example, if a user-mode driver causes the
host process to fail, all drivers in that host process fail. The system continues to
function except for the affected drivers and applications accessing these drivers, yet it
is possible to recover from this situation by reloading the drivers, if the applications
support it. If you isolate a critical driver in a separate user mode driver host process,
you can increase the overall system stability. By using the registry entries listed in
Table 6–5, you can define individual host process groups.

User Space

Kernel Space

Reflector Service

Udevice.exe

User-Mode Driver
DLL

Udevice.exe

Device Manager

Kernel-Mode
Driver DLL

User-Mode Driver
DLL

Table 6-5 Registry entries for user-mode driver host processes

Registry Entry Type Description

HKEY_LOCAL_MACHINE
\ Drivers\ProcGroup_###

REG_KEY Defines a three-digit group ID
(###) for a user-mode driver host
process, such as ProcGroup_003,
which you can then specify in the
UserProcGroup entry in a driver’s
registry key, such as
UserProcGroup =3.

270 Chapter 6 Developing Device Drivers

Having defined the desired host process groups, you can associate each user-mode
driver with a particular group by adding the UserProcGroup registry entry to the
device driver’s registry subkey (see Table 6–3 earlier in this lesson). By default, the
UserProcGroup registry entry does not exist, which corresponds to a configuration in
which Device Manager loads every user-mode driver into a separate host process
instance.

Binary Image Builder Configuration
As explained in Chapter 2, “Building and Deploying a Run-Time Image,” the Windows
Embedded CE build process relies on binary image builder (.bib) files to generate the
content of the run-time image and to define the final memory layout of the device.
Among other things, you can specify a combination of flags for a driver’s module
definition. Issues can arise if .bib file settings and registry entries do not match for a
device driver. For example, if you specify the K flag for a device driver module in a .bib
file and also set the DEVFLAGS_LOAD_AS_USERPROC flag in the driver’s registry
subkey to load the driver into the user-mode driver host process, the driver fails to
load because the K flag instructs Romimage.exe to load the module in kernel space
above the memory address 0x80000000. To load a driver in user mode, be sure to
load the module into user space below 0x80000000, such as into the NK memory
region defined in the Config.bib file for the BSP.

ProcName REG_SZ The process that the Reflector
service starts to host the user-mode
driver, such as ProcName=
Udevice.exe.

ProcVolPrefix REG_SZ Specifies the file system volume
that the Reflector service mounts
for the user-mode driver host
process, such as ProcVolPrefix =
$udevice. The specified
ProcVolPrefix replaces the $device
volume in driver device names.

Table 6-5 Registry entries for user-mode driver host processes (Continued)

Registry Entry Type Description

Lesson 3: Configuring and Loading a Driver 271

The following .bib file entry demonstrates how to load a user-mode driver into the NK
memory region:

driver.dll $(_FLATRELEASEDIR)\driver.dll NK SHQ

The S and H flags indicate that Driver.dll is both a system file and a hidden file,
located in the flat release directory. The Q flag specifies that the system can load this
module concurrently into both kernel and user space. It adds two copies of the DLL
to the run-time image, one with and one without the K flag, and doubles in this way
ROM and RAM space requirements for the driver. Use the Q flag sparingly.

Extending the above example, the Q flag is equivalent to the following:

driver.dll $(_FLATRELEASEDIR)\driver.dll NK SH

driver.dll $(_FLATRELEASEDIR)\driver.dll NK SHK

Lesson Summary
Windows Embedded CE can load drivers into kernel space or user space. Drivers
running in kernel space have access to system APIs and kernel memory and can affect
the stability of the system if failures occur. However, properly implemented kernel-
mode drivers exhibit better performance than user-mode drivers, due to reduced
context switching between kernel and user mode. On the other hand, the advantage
of user-mode drivers is that failures primarily affect the current user-mode process.
User-mode drivers are also less privileged, which can be an important aspect in
respect to non-trusted drivers from third-party vendors.

To integrate a driver running in user mode with Device Manager running in kernel
mode, Device Manager uses a Reflector service that loads the driver in a user-mode
driver host process and forwards the stream function calls and return values between
the driver and Device Manager. In this way, applications can continue to use familiar
file system APIs to access the driver, and the driver does not need code changes
regarding the stream interface API to remain compatible with Device Manager. By
default, user-mode drivers run in separate host processes, but you can also configure
host process groups and associate drivers with these groups by adding a
corresponding UserProcGroup registry entry to a driver’s registry subkey. Driver
subkeys can reside in any registry location, yet if you want to load the drivers at boot
time automatically, you must place the subkeys into Device Manager’s RootKey,
which by default is HKEY_LOCAL_MACHINE\Drivers\BuiltIn. Drivers that have
their subkeys in different locations can be loaded on demand by calling the
ActivateDeviceEx function.

272 Chapter 6 Developing Device Drivers

Lesson 4: Implementing an Interrupt Mechanism
in a Device Driver

Interrupts are notifications generated either in hardware or software to inform the
CPU that an event has occurred that requires immediate attention, such as timer
events or keyboard events. In response to an interrupt, the CPU stops executing the
current thread, jumps to a trap handler in the kernel to respond to the event, and then
resumes executing the original thread after the interrupt is handled. In this way,
integrated and peripheral hardware components, such as system clock, serial ports,
network adapters, keyboards, mouse, touchscreen, and other devices, can get the
attention of the CPU and have the kernel exception handler run appropriate code in
interrupt service routines (ISRs) within the kernel or in associated device drivers. To
implement interrupt processing in a device driver efficiently, you must have a detailed
understanding of Windows Embedded CE 6.0 interrupt handling mechanisms,
including the registration of ISRs in the kernel and the execution of interrupt service
threads (ISTs) within the Device Manager process.

After this lesson, you will be able to:

■ Implement an interrupt handler in the OEM adaptation layer (OAL).

■ Register and handle interrupts in a device driver interrupt service thread (IST).

Estimated lesson time: 40 minutes.

Interrupt Handling Architecture
Windows Embedded CE 6.0 is a portable operating system that supports different
CPU types with varying interrupt schemes by implementing a flexible interrupt
handling architecture. Most importantly, the interrupt handling architecture takes
advantage of interrupt-synchronization capabilities in the OAL and thread-
synchronization capabilities of Windows Embedded CE to split the interrupt
processing into ISRs and ISTs, as illustrated in Figure 6–6.

Windows Embedded CE 6.0 interrupt handling is based on the following concepts:

1. During the boot process, the kernel calls the OEMInit function in the OAL to
register all available ISRs built into the kernel with their corresponding
hardware interrupts based on their interrupt request (IRQ) values. IRQ values
are numbers that identify the source of the interrupt in the processor interrupt
controller registers.

Lesson 4: Implementing an Interrupt Mechanism in a Device Driver 273

2. Device drivers can dynamically install ISRs implemented in ISR DLLs by calling
the LoadIntChainHandler function. LoadIntChainHandler loads the ISR DLL
into kernel memory space and registers the specified ISR routine with the
specified IRQ value in the kernel’s interrupt dispatch table.

3. An interrupt occurs to notify the CPU that an event requires suspending the
current thread of execution and transferring control to a different routine.

4. In response to the interrupt, the CPU stops executing the current thread and
jumps to the kernel exception handler as the primary target of all interrupts.

5. The exception handler masks off all interrupts of an equal or lower priority and
then calls the appropriate ISR registered to handle the current interrupt. Most
hardware platforms use interrupt masks and interrupt priorities to implement
hardware–based interrupt synchronization mechanisms.

6. The ISR performs any necessary tasks, such as masking the current interrupt so
that the current hardware device cannot trigger further interrupts, which would
interfere with the current processing, and then returns a SYSINTR value to the
exception handler. The SYSINTR value is a logical interrupt identifier.

7. The exception handler passes the SYSINTR value to the kernel’s interrupt
support handler, which determines the event for the SYSINTR value, and, if
found, signals that event for any waiting ISTs for the interrupt.

8. The interrupt support handler unmasks all interrupts, with the exception of the
interrupt currently in processing. Keeping the current interrupt masked off
explicitly prevents the current hardware device from triggering another
interrupt while the IST runs.

9. The IST runs in response to the signaled event to perform and finish the
interrupt handling without blocking other devices on the system.

10. The IST calls the InterruptDone function to inform the kernel’s interrupt
support handler that the IST has finished its processing and is ready for another
interrupt event.

11. The interrupt support handler calls the OEMInterruptDone function in the OAL
to complete the interrupt handling process and reenable the interrupt.

274 Chapter 6 Developing Device Drivers

Figure 6-6 IRQs, ISRs, SYSINTRs, and ISTs

Interrupt Service Routines
In general, ISRs are small blocks of code that run in response to a hardware interrupt.
Because the kernel exception handler masks off all interrupts of equal or lesser
priority while this ISR runs, it is important to complete the ISR and return a SYSINTR
value as quickly as possible so that the kernel can re-enable (unmask) all IRQs with
minimal delay (except the currently processed interrupt). System performance can
suffer significantly if too much time is spent in ISRs, leading to missed interrupts or
overrun buffers on some devices. Another important aspect is that the ISR runs in
kernel mode and does not have access to higher-level operating system APIs. For
these reasons, ISRs usually perform no more than the most basic tasks, such as
quickly copying data from hardware registers to memory buffers. On Windows
Embedded CE, time-consuming interrupt processing is usually performed in an IST.

The primary task of the ISR is to determine the interrupt source, mask off or clear the
interrupt at the device, and then return a SYSINTR value for the interrupt to notify the
kernel about an IST to run. In the simplest case, the ISR returns SYSINTR_NOP to
indicate that no further processing is necessary. Accordingly, the kernel does not
signal an event for an IST to handle the interrupt. On the other hand, if the device
driver uses an IST to handle the interrupt, the ISR passes the logical interrupt
identifier to the kernel, the kernel determines and signals the interrupt event, and the
IST typically resumes from a WaitForSingleObject call and executes the interrupt
processing instructions in a loop. The latency between the ISR and the IST depends
on the priority of the thread and other threads running in the system, as explained in
Chapter 3, “Performing System Programming.” Typically, ISTs run with a high thread
priority.

Interrupt Service Threads
An IST is a regular thread that performs additional processing in response to an
interrupt, after the ISR has completed. The IST function typically includes a loop and
a WaitForSingleObject call to block the thread infinitely until the kernel signals the
specified IST event, as illustrated in the following code snippet. However, before you

IRQ
ISR

IST calls InterruptDone to reenable the IRQ.

SYSINTR
ISTInterrupt

Occurs

Lesson 4: Implementing an Interrupt Mechanism in a Device Driver 275

can use the IST event, you must call InterruptInitialize with the SYSINTR value and an
event handle as parameters so that the CE kernel can signal this event whenever an
ISR returns the SYSINTR value. Chapter 3 provides detailed information about multi-
threaded programming and thread synchronization based on events and other kernel
objects.

 CeSetThreadPriority(GetCurrentThread(), 200);

 // Loop until told to stop

 while(!pIst->stop)

 {

 // Wait for the IST event.

 WaitForSingleObject(pIst->hevIrq, INFINITE)

 // Handle the interrupt.

 InterruptDone(pIst->sysIntr);

 }

When the IST has completed processing an IRQ, it should call InterruptDone to
inform the system that the interrupt was processed, that the IST is ready to handle the
next IRQ, and that the interrupt can be reenabled by means of an OEMInterruptDone
call. Table 6–6 lists the OAL functions that the system uses to interact with the
interrupt controller to manage interrupts.

Table 6-6 OAL functions for interrupt management

Function Description

OEMInterruptEnable This function is called by the kernel in response to
InterruptInitialize and enables the specified
interrupt in the interrupt controller.

OEMInterruptDone This function is called by the kernel in response to
InterruptDone and should unmask the interrupt
and acknowledge the interrupt in the interrupt
controller.

OEMInterruptDisable This function disables the interrupt in the interrupt
controller and is called in response to the
InterruptDisable function.

OEMInterruptHandler For ARM processors only, this function identifies
the interrupt SYSINTR that occurs by looking at the
status of the interrupt controller.

276 Chapter 6 Developing Device Drivers

CAUTION WaitForMultipleObjects restriction

Do not use the WaitForMultipleObjects function to wait for an interrupt event. If you must wait
for multiple interrupt events, you should create an IST for each interrupt.

Interrupt Identifiers (IRQ and SYSINTR)
Each hardware interrupt line corresponds to an IRQ value in the interrupt controller
registers. Each IRQ value can be associated with only one ISR, but an ISR can map to
multiple IRQs. The kernel does not need to maintain the IRQs. It just determines and
signals events associated with the SYSINTR values returned from the ISR in response
to the IRQ. The ability to return varying SYSINTR values from an ISR provides the
basis to support multiple devices that use the same shared interrupt.

NOTE OEMInterruptHandler and HookInterrupt

Target devices that only support a single IRQ, such as ARM–based systems, use the OEMInter-
ruptHandler function as the ISR to identify the embedded peripheral that triggered the interrupt.
Original equipment manufacturers (OEMs) must implement this function as part of the OAL. On
platforms that support multiple IRQs, such as Intel x86–based systems, you can associate the
IRQs with individual ISRs by calling HookInterrupt.

Static Interrupt Mappings
For the ISR to determine a correct SYSINTR return value there must be a mapping
between the IRQ and the SYSINTR, which can be hardcoded into the OAL. The
Bsp_cfg.h file for the Device Emulator BSP demonstrates how to define a SYSINTR
value in the OAL for a target device relative to the SYSINTR_FIRMWARE value. If you
want to define additional identifiers in your OAL for a custom target device, keep in

HookInterrupt For processors other than ARM, this function
registers a callback function for a specified interrupt
ID. This function must be called in the OEMInit
function to register mandatory interrupts.

OEMInterruptHandlerFIQ For ARM processors, used to handle interrupts for
the Fast Interrupt (FIQ) line.

Table 6-6 OAL functions for interrupt management (Continued)

Function Description

Lesson 4: Implementing an Interrupt Mechanism in a Device Driver 277

mind that the kernel reserves all values below SYSINTR_FIRMWARE for future use
and the maximum value should be less than SYSINTR_MAXIMUM.

To add a mapping of static SYSINTR values to IRQs on a target device, you can call the
OALIntrStaticTranslate function during system initialization. For example, the Device
Emulator BSP calls OALIntrStaticTranslate in the BSPIntrInit function to register a
custom SYSINTR value for the built-in Open Host Controller Interface (OHCI) in the
kernel’s interrupt mapping arrays (g_oalSysIntr2Irq and g_oalIrq2SysIntr). However,
static SYSINTR values and mappings are not a common way to associate IRQs with
SYSINTRs because it is difficult and requires OAL code changes to implement custom
interrupt handling. Static SYSINTR values are typically used for core hardware
components of a target device where there is no explicit device driver and the ISR
resides in the OAL.

Dynamic Interrupt Mappings
The good news is that you do not need to hardcode SYSINTR values into the OAL if
you call KernelIoControl in your device drivers with an IO control code of
IOCTL_HAL_REQUEST_SYSINTR to register IRQ/SYSINTR mappings. The call
eventually ends in the OALIntrRequestSysIntr function, which dynamically allocates
a new SYSINTR for the given IRQ, and then registers the IRQ and SYSINTR mappings
in the kernel’s interrupt mapping arrays. Locating a free SYSINTR value up to
SYSINTR_MAXUMUM is more flexible than static SYSINTR assignments because
this mechanism does not require any modifications to the OAL when you add new
drivers to the BSP.

When calling KernelIoControl with IOCTL_HAL_REQUEST_SYSINTR, you
establish a 1:1 relationship between IRQ and SYSINTR. If the IRQ-SYSINTR mapping
table already has an entry for the specified IRQ, OALIntrRequestSysIntr will not
create a second entry. To remove an entry from the interrupt mapping tables, such as
when unloading a driver, call KernelIoControl with an IO control code of
IOCTL_HAL_REQUEST_SYSINTR. IOCTL_HAL_RELEASE_SYSINTR dissociates
the IRQ from the SYSINTR value.

The following code sample illustrates the use of IOCTL_HAL_REQUEST_SYSINTR
and IOCTL_HAL_RELEASE_SYSINTR. It takes a custom value (dwLogintr) and
passes this value to the OAL to be translated into a SYSINTR value, and then
associates this SYSINTR with an IST event.

278 Chapter 6 Developing Device Drivers

DWORD dwLogintr = IRQ_VALUE;
DWORD dwSysintr = 0;
HANDLE hEvent = NULL;
BOOL bResult = TRUE;

// Create event to associate with the interrupt
m_hEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
if (m_hDetectionEvent == NULL)
{
 return ERROR_VALUE;
}

// Ask the kernel (OAL) to associate an SYSINTR value to an IRQ
bResult = KernelIoControl(IOCTL_HAL_REQUEST_SYSINTR,
 &dwLogintr, sizeof(dwLogintr),
 &dwSysintr, sizeof(dwSysintr),
 0);
if (bResult == FALSE)
{
 return ERROR_VALUE;
}

// Initialize interrupt and associate the SYSINTR value with the event.
bResult = InterruptInitialize(dwSysintr, hEvent,0,0);

if (bResult == FALSE)
{
 return ERROR_VALUE;
}

// Interrupt management loop
while(!m_bTerminateDetectionThread)
{
 // Wait for the event associated to the interrupt
 WaitForSingleObject(hEvent,INFINITE);

 // Add actual IST processing here

 // Acknowledge the interrupt
 InterruptDone(m_dwSysintr);
}

// Deinitialize interrupts will mask the interrupt
bResult = InterruptDisable(dwSysintr);

// Unregister SYSINTR
bResult = KernelIoControl(IOCTL_HAL_RELEASE_SYSINTR,
 &dwSysintr, sizeof(dwSysintr),
 NULL,0,
 0);

// Close the event object
CloseHandle(hEvent);

Lesson 4: Implementing an Interrupt Mechanism in a Device Driver 279

Shared Interrupt Mappings
The 1:1 relationship between IRQ and SYSINTR implies that you cannot register
multiple ISRs for an IRQ directly to implement interrupt sharing, but you can map
multiple ISRs indirectly. The interrupt mapping tables only map an IRQ to one static
ISR, yet within this ISR, you can call the NKCallIntChain function to iterate through
the chain of ISRs, registered dynamically through LoadIntChainHandler.
NKCallIntChain goes through the ISRs registered for the shared interrupt and returns
the first SYSINTR value that is not equal to SYSINTR_CHAIN. Having determined the
appropriate SYSINTR for the current interrupt source, the static ISR can pass this
logical interrupt identifier to the kernel to signal the corresponding IST event. The
LoadIntChainHandler function and installable ISRs are covered in more detail later in
this lesson.

Communication between an ISR and an IST
Because ISR and IST run at different times and in different contexts, you must take
extra care of physical and virtual memory mappings if an ISR must pass data to an IST.
For example, an ISR might copy individual bytes from a peripheral device into an
input buffer, returning SYSINTR_NOP until the buffer is full. The ISR returns the
actual SYSINTR value only when the input buffer is ready for the IST. The kernel
signals the corresponding IST event and the IST runs to copy the data into a process
buffer.

One way to accomplish this data transfer is to reserve a physical memory section in a
.bib file. Config.bib contains several examples for the serial and debug drivers. The
ISR can then call the OALPAtoVA function to translate the physical address of the
reserved memory section into a virtual address. Because the ISR runs in kernel mode,
the ISR can access the reserved memory to buffer data from the peripheral device. The
IST, on the other hand, calls MmMapIoSpace outside the kernel to map the physical
memory to a process-specific virtual address. MmMapIoSpace uses VirtualAlloc and
VirtualCopy to map the physical memory into virtual memory, yet you can also call
VirtualAlloc and VirtualCopy directly if you need more control over the address
mapping process.

Another option to pass data from an ISR to an IST is to allocate physical memory in
SDRAM dynamically by using the AllocPhysMem function in the device driver, which
is particularly useful for installable ISRs loaded into the kernel on an as-needed basis.
AllocPhysMem allocates a physically contiguous memory area and returns the
physical address (or fails if the allocation size is not available). The device driver can

280 Chapter 6 Developing Device Drivers

communicate the physical address to the ISR in a call to KernelIoControl based on a
user-defined IO control code. The ISR then uses the OALPAtoVA function to translate
the physical address into a virtual address. The IST uses MmMapIoSpace or the
VirtualAlloc and VirtualCopy functions, as already explained for statically reserved
memory regions.

Installable ISRs
When adapting Windows Embedded CE to a custom target device, it is important to
keep the OAL as generic as possible. Otherwise, you have to modify the code every
time you add a new component to the system. To provide flexibility and adaptability,
Windows Embedded CE supports installable ISRs (IISR), which a device driver can
load into kernel space on demand, such as when new peripheral devices are
connected in a Plug and Play fashion. Installable ISRs also provide a solution to
process interrupts when multiple hardware devices share the same interrupt line. The
ISR architecture relies on lean DLLs that contain the code of the installable ISR and
export the entry points summarized in Table 6–7.

Table 6-7 Exported installable ISR DLL functions

Function Description

ISRHandler This function contains the installable interrupt handler.
The return value is the SYSINTR value for the IST that you
want to run in response to the IRQ registered for the
installable ISR in the call to the LoadIntChainHandler
function. The OAL must support chaining on at least that
IRQ, which means that an unhandled interrupt can be
chained to another handler (which is the installed ISR in
this case) when an interrupt occurs.

CreateInstance This function is called when an installable ISR is loaded
by using the LoadIntChainHandler function. It returns an
instance identifier for the ISR.

DestroyInstance This function is called when an installable ISR is
unloaded by using the FreeIntChainHandler function.

IOControl This function supports communication from the IST to
the ISR.

Lesson 4: Implementing an Interrupt Mechanism in a Device Driver 281

NOTE Generic installable ISR (GIISR)

To help you implement installable ISRs, Microsoft provides a generic installable ISR sample that
covers the most typical needs for many devices. You can find the source code in the following
folder: %_WINCEROOT%\Public\Common\Oak\Drivers\Giisr.

Registering an IISR
The LoadIntChainHandler function expects three parameters that you must specify
to load and register an installable ISR. The first parameter (lpFilename) specifies the
filename of the ISR DLL to load. The second parameter (lpszFunctionName)
identifies the name of the interrupt handler function, and the third parameter (bIRQ)
defines the IRQ number for which you want to register the installable ISR. In response
to hardware disconnect, a device driver can also unload an installable ISR by calling
the FreeIntChainHandler function.

External Dependencies and Installable ISRs
It is important to keep in mind that LoadIntChainHandler loads ISR DLLs into kernel
space, which means that the installable ISR cannot call high-level operating system
APIs and cannot import or implicitly link to other DLLs. If the DLL has explicit or
implicit links to other DLLs, or if it uses the C run-time library, the DLL will not be
able to load. The installable ISR must be completely self-sufficient.

To ensure that an installable ISR does not link to the C run-time libraries or any DLLs,
you must add the following lines to the Sources file in your DLL subproject:

NOMIPS16CODE=1

NOLIBC=1

The NOLIBC=1 directive ensures that the C run-time libraries are not linked and the
NOMIPS16CODE=1 option enables the compiler option /QRimplicit-import, which
prevents implicit links to other DLLs. Note that this directive has absolutely no
relationship to the Microprocessor without Interlocked Pipeline Stages (MIPS) CPU.

282 Chapter 6 Developing Device Drivers

Lesson Summary
Windows Embedded CE relies on ISRs and ISTs to respond to interrupt requests
triggered by internal and external hardware components that require the attention of
the CPU outside the normal code execution path. ISRs are typically compiled directly
into the kernel or implemented in device drivers loaded at boot time and registered
with corresponding IRQs through HookInterrupt calls. You can also implement
installable ISRs in ISR DLLs, which device drivers can load on demand and associate
with an IRQ by calling LoadIntChainHandler. Installable ISRs also enable you to
support interrupt sharing. For example, on a system with only a single IRQ, such as
an ARM–based device, you can modify the OEMInterruptHandler function, which is
a static ISR that loads further installable ISRs depending on the hardware component
that triggered the interrupt.

Apart from the fact that ISR DLLs must not have any dependencies on external code,
ISRs and installable ISRs have many similarities. The primary task of an interrupt
handler is to determine the interrupt source, mask off or clear the interrupt at the
device, and then return a SYSINTR value for the IRQ to notify the kernel about an IST
to run. Windows Embedded CE maintains interrupt mapping tables that associate
IRQs with SYSINTR values. You can define static SYSINTR values in the source code
or use dynamic SYSINTR values that you can request from the kernel at run time. By
using dynamic SYSINTR values, you can increase the portability of your solutions.

According to the SYSINTR value, the kernel can signal an IST event which enables the
corresponding interrupt service thread to resume from a WaitForSingleObject call. By
performing most of the work to handle the IRQ in the IST instead of the ISR, you can
achieve optimal system performance because the system blocks interrupt sources
with lower or equal priority only during ISR execution. The kernel unmasks all
interrupts when the ISR finishes, with the exception of the interrupt currently in
processing. The current interrupt source remains blocked so that a new interrupt
from the same device cannot interfere with the current interrupt handling procedure.
When the IST has finished its work, the IST must call InterruptDone to inform the
kernel that it is ready for a new interrupt so that the kernel’s interrupt support
handler can reenable the IRQ in the interrupt controller.

Lesson 5: Implementing Power Management for a Device Driver 283

Lesson 5: Implementing Power Management
for a Device Driver

As mentioned in Chapter 3, power management is important for Windows
Embedded CE devices. The operating system includes a Power Manager (PM.dll),
which is a kernel component that integrates with Device Manager to enable devices to
manage their own power states and applications to set power requirements for certain
devices. The primary purpose of Power Manager is to optimize power consumption
and to provide an API to system components, drivers, and applications for power
notifications and control. Although Power Manager does not impose strict
requirements on power consumption or capabilities in any particular power state, it is
beneficial to add power management features to a device driver so that you can
manage the state of your hardware components in a way that is consistent with the
power state of the target device. For more information about Power Manager, device
and system power states, and power management features supported in Windows
Embedded CE 6.0, read Chapter 3, “Performing System Programming.”

After this lesson, you will be able to:

■ Identify the power management interface for device drivers.

■ Implement power management in a device driver.

Estimated lesson time: 30 minutes.

Power Manager Device Drivers Interface
Power Manager interacts with power management–enabled drivers through the
XXX_PowerUp, XXX_PowerDown, and XXX_IOControl functions. For example, the
device driver itself can request a change of the device power level from Power Manager
by calling the DevicePowerNotify function. In response, Power Manager calls
XXX_IOControl with an IO control code of IOCTL_POWER_SET passing in the
requested device power state. It might seem overcomplicated for a device driver to
change the power state of its own device through Power Manager, yet this procedure
ensures a consistent behavior and positive end-user experience. If an application
requested a specific power level for the device, Power Manager might not call the
IOCTL_POWER_SET handler in response to DevicePowerNotify. Accordingly, device
drivers should not assume that successful calls to DevicePowerNotify result in a call to
the IOCTL_POWER_SET handler or that any calls to IOCTL_POWER_SET are the
result of a DevicePowerNotify call. Power Manager can send notifications to a device

284 Chapter 6 Developing Device Drivers

driver in many situations, such as during a system power state transition. To receive
power management notifications, device drivers must advertise that they are power
management enabled, either statically through the IClass registry entry in the driver’s
registry subkey or dynamically by using the AdvertiseInterface function.

XXX_PowerUp and XXX_PowerDown
You can use the XXX_PowerUp and XXX_PowerDown stream interface functions to
implement suspend and resume functionality. The kernel calls XXX_PowerDown
right before powering down the CPU and XXX_PowerUp right after powering it up. It
is important to note that the system operates in single-threaded mode during these
stages with most system calls disabled. For this reason, Microsoft recommends using
the XXX_IOControl function instead of XXX_PowerUp and XXX_PowerDown to
implement power management features, including suspend and resume functionality.

CAUTION Power management restrictions

I f you implement suspend and resume functionali ty based on the XXX_PowerUp and
XXX_PowerDown functions, avoid calling system APIs, particularly thread-blocking APIs, such as
WaitForSingleObject. Blocking the active thread in single-threaded mode causes an unrecover-
able system lockup.

IOControl
The best way to implement power manager in a stream driver is to add support for
power management I/O control codes to the driver’s IOControl function. When you
notify Power Manager about your driver’s power management capabilities through an
IClass registry entry or the AdvertiseInterface function, your driver receives
corresponding notification messages.

Table 6–8 lists the IOCTLs that Power Manager can send to a device driver to perform
power management–related tasks.

Table 6-8 Power management IOCTLs

Function Description

IOCTL_POWER_CAPABILITIES Requests information on what
power states the driver
supports. Note that the driver
can still be set to other power
states (D0 through D4).

Lesson 5: Implementing Power Management for a Device Driver 285

IClass Power Management Interfaces
Power Manager supports an IClass registry entry that you can configure in the driver’s
registry subkey to associate your driver with one or more device class values. An
IClass value is a globally unique identifier (GUID) referring to an interface, defined
under the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
\Power\Interfaces registry key. The most important interface for driver developers is
the interface for generic power management–enabled devices, associated with the
GUID {A32942B7-920C-486b-B0E6-92A702A99B35}. By adding this GUID to the
IClass registry entry of your device driver, you can inform Power Manager to send
your driver IOCTLs for power management notifications, as illustrated in Figure 6–7.

IOCTL_POWER_GET Requests the current power
state of the driver.

IOCTL_POWER_SET Sets the power state of the
driver. The driver maps the
received power state number to
actual settings and changes the
device state. The new device
driver power state should be
returned to Power Manager in
the output buffer.

IOCTL_POWER_QUERY Power Manger checks to see if
the driver is able to change the
state of the device. This
function is deprecated.

IOCTL_REGISTER_POWER_RELATIONSHIP Enables a device driver to
register as the proxy for another
device driver, so that Power
Manager passes all power
requests to this device driver.

Table 6-8 Power management IOCTLs (Continued)

Function Description

286 Chapter 6 Developing Device Drivers

Figure 6-7 Configuring the IClass registry entry to receive power management notifications.

MORE INFO Registry settings for power management

You can also use registry settings and device classes to configure the default power states for a
device, as explained in Lesson 5, “Implementing Power Management,” of Chapter 3.

Lesson 5: Implementing Power Management for a Device Driver 287

Lesson Summary
To ensure reliable power management on Windows Embedded CE, device drivers
should not change their own internal power state without the involvement of Power
Manager. Operating system components, drivers, and applications can call the
DevicePowerNotify function to request a power state change. Accordingly, Power
Manager sends a power state change request to the driver if the power state change is
consistent with the current state of the system. The recommended way to add power
management capabilities to a stream driver is to add support for power management
IOCTLs to the XXX_IOControl function. The XXX_PowerUp and XXX_PowerDown
functions only provide limited capability because Power Manager calls these
functions at a time when the system operates in single-thread mode. If the device
advertises a power management interface through an IClass registry entry or calls the
AdvertiseInterface to announce supported IOCTL interfaces dynamically, Power
Manager will send IOCTLs to the device driver in response to power-related events.

288 Chapter 6 Developing Device Drivers

Lesson 6: Marshaling Data across Boundaries
In Windows Embedded CE 6.0, each process has its own separate virtual memory
space and memory context. Accordingly, marshaling data from one process to
another requires either a copying process or a mapping of physical memory sections.
Windows Embedded CE 6.0 handles most of the details and provides system
functions, such as OALPAtoVA and MmMapIoSpace, to map physical memory
addresses to virtual memory addresses in a relatively straightforward way. However,
driver developers must understand the details of data marshaling to ensure a reliable
and secure system. It is imperative to validate embedded pointers and properly
handle asynchronous buffer access so that a user application cannot exploit a kernel-
mode driver to manipulate memory regions that the application should not be able to
access. Poorly implemented kernel-mode drivers can open a back door for malicious
applications to take over the entire system.

After this lesson, you will be able to:

■ Allocate and use buffers in device drivers.

■ Use embedded pointers in an application.

■ Verify the validity of embedded pointers in a device driver.

Estimated lesson time: 30 minutes.

Understanding Memory Access
Windows Embedded CE works in a virtual memory context and hides the physical
memory, as illustrated in Figure 6–8. The operating system relies on the Virtual
Memory Manager (VMM) and the processor’s Memory Management Unit (MMU) for
the translation of the virtual addresses into physical addresses and for other memory
access management tasks.

Lesson 6: Marshaling Data across Boundaries 289

Figure 6-8 Virtual memory regions in kernel space and user space

Physical addresses are not directly addressable by the CPU except during
initialization before the kernel has enabled the MMU, yet this does not imply that the
physical memory is no longer accessible. In fact, every fully allocated virtual memory
page must map to some actual physical page on the target device. Processes in
separate virtual address spaces only require a mechanism to map the same physical
memory areas into an available virtual memory region to share data. The physical
address is the same across all processes running on the system. Only the virtual
addresses differ. By translating the physical address per process into a valid virtual

Memory Page

Memory Page

Memory Page

Memory Page

Memory Page

Kernel Virtual Memory

Object Store

Kernel XIP DLLs

Shared System Heap

RAM-Backed Mapfiles

Shared User DLLs
(Code and Data)

Process Space
(Executable Code and Data

VM Allocation
File-Backed Mapfiles)

Statically Mapped Virtual
Addresses : Uncached

Statically Mapped Virtual
Addresses : Cached

System Trap Area
0xFFFF FFFF

Kernel Space

Physical
Memory

User Space

Virtual MemoryVirtual Memory

0xF000 0000

0xD000 0000

0xC800 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x7FFF FFFF

0x7000 0000

0x6000 0000

0x4000 0000

0x0000 0000

Kernel Virtual Memory

Object Store

Kernel XIP DLLs

Shared System Heap

RAM-Backed Mapfiles

Shared User DLLs
(Code and Data)

Process Space
(Executable Code and Data

VM Allocation
File-Backed Mapfiles)

Statically Mapped Virtual
Addresses : Uncached

Statically Mapped Virtual
Addresses : Cached

System Trap Area
0xFFFF FFFF

Kernel Space

User Space

0xF000 0000

0xD000 0000

0xC800 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x7FFF FFFF

0x7000 0000

0x6000 0000

0x4000 0000

0x0000 0000

290 Chapter 6 Developing Device Drivers

address, processes can access the same physical memory region and share data across
process boundaries.

As mentioned earlier in this chapter, kernel-mode routines, such as ISRs, can call
OALPAtoVA to map a physical address (PA) into a cached or uncached virtual address
(VA). Because OALPAtoVA maps the physical address to a virtual address in the kernel
space, user-mode processes, such as ISTs, cannot use this function. The kernel space
is inaccessible in user mode. However, threads in user-mode processes, such as ISTs,
can call the MmMapIoSpace function to map a physical address to a nonpaged,
cached or uncached virtual address in the user space. The MmMapIoSpace call results
in the creation of a new entry in the MMU Table (TBL) if no match was found or it
returns an existing mapping. By calling the MmUnmapIoSpace function, the user-
mode process can release the memory again.

NOTE Physical memory access restrictions

Applications and user-mode drivers cannot access physical device memory directly. User-mode
processes must call HalTranslateBusAddress to map the physical device memory range for the
bus to a physical system memory address before calling MmMapIoSpace. To convert a bus
address into a virtual address in a single function call, use the TransBusAddrToVirtual function,
which in turn calls HalTranslateBusAddress and MmMapIoSpace.

Allocating Physical Memory
It’s possible to allocate a portion of memory so you can use it in a driver or the kernel.
There are two ways to do this:

■ Dynamically, by calling the AllocPhysMem function AllocPhysMem
allocates contiguous physical memory in one or more pages that you can map to
virtual memory in the user space by calling MmMapIoSpace or OALPAtoVA,
depending on whether the code is running in user mode or kernel mode.
Because physical memory is allocated in units of memory pages, it is not
possible to allocate less than a page of physical memory. The size of the memory
page depends on the hardware platform. A typical page size is 64 KB.

■ Statically, by creating a RESERVED section in the Config.bib file You can
statically reserve physical memory by using the MEMORY section of a run-time
image’s BIB file, such as Config.bib in the BSP folder. Figure 6–9 illustrates this
approach. The names of the memory regions are for informational purposes and
are only used to identify the different memory areas defined on the system. The
important pieces of information are the address definitions and the RESERVED

Lesson 6: Marshaling Data across Boundaries 291

keyword. According to these settings, Windows Embedded CE excludes the
reserved regions from system memory so that they can be used for DMA by
peripherals and data transfers. There is no risk of access conflicts because the
system does not use reserved memory areas.

Figure 6-9 Definition of reserved memory regions in a Config.bib file

Application Caller Buffers
In Windows Embedded CE 6.0, applications and device drivers run in different
process spaces. For example, Device Manager loads stream drivers into the kernel
process (Nk.exe) or into the user-mode driver host process (Udevice.exe), whereas
each application runs in its own individual process space. Because pointers to virtual
memory addresses in one process space are invalid in other process spaces, you must
map or marshal pointer parameters if separate processes are supposed to access the
same buffer region in physical memory for communication and data transfer across
process boundaries.

292 Chapter 6 Developing Device Drivers

Using Pointer Parameters
A pointer parameter is a pointer that a caller can pass as a parameter to a function. The
DeviceIoControl parameters lpInBuf and lpOutBuf are perfect examples. Applications
can use DeviceIoControl to perform direct input and output operations. A pointer to
an input buffer (lpInBuf) and a pointer to an output buffer (lpOutBuf) enable data
transfer between the application and the driver. DeviceIoControl is declared in
Winbase.h as follows:

WINBASEAPI BOOL WINAPI DeviceIoControl (HANDLE hDevice,

 DWORD dwIoControlCode,

 __inout_bcount_opt(nInBufSize)LPVOID lpInBuf,

 DWORD nInBufSize,

 __inout_bcount_opt(nOutBufSize) LPVOID lpOutBuf,

 DWORD nOutBufSize,

 __out_opt LPDWORD lpBytesReturned,

 __reserved LPOVERLAPPED lpOverlapped);

Pointer parameters are convenient to use in Windows Embedded CE 6.0 because the
kernel automatically performs full access checks and marshaling on these
parameters. In the DeviceIoControl declaration above, you can see that the buffer
parameters lpInBuf and lpOutBuf are defined as in/out parameters of a specified size,
while lpBytesReturned is an out-only parameter. Based on these declarations, the
kernel can ensure that an application does not pass in an address to read-only
memory (such as a shared heap, which is read-only to user-mode processes, but
writable to the kernel) as an in/out or out-only buffer pointer or it will trigger an
exception. In this way, Windows Embedded CE 6.0 ensures that an application
cannot gain elevated access permissions to a memory region through a kernel-mode
driver. Accordingly, on the driver’s side, you do not have to perform any access checks
for the pointers passed in through the XXX_IOControl stream interface function
(pBufIn and pBufOut).

Using Embedded Pointers
Embedded pointers are pointers that a caller passes to a function indirectly through
a memory buffer. For example, an application can store a pointer inside the input
buffer passed in to DeviceIoControl through the parameter pointer lpInBuf. The
kernel will automatically check and marshal the parameter pointer lpInBuf, yet the
system has no way to identify the embedded pointer inside the input buffer. As far as
the kernel is concerned, the memory buffer simply contains binary data. Windows
Embedded CE 6.0 provides no mechanisms to specify explicitly that this block of
memory contains pointers.

Lesson 6: Marshaling Data across Boundaries 293

Because embedded pointers bypass the kernel’s access checks and marshaling
helpers, you must perform access checks and marshaling of embedded pointers in
device drivers manually before you can use them. Otherwise, you might create
vulnerabilities that malicious user-mode code can exploit to perform illegal actions
and compromise the entire system. Kernel-mode drivers enjoy a high level of
privileges and can access system memory that user-mode code should not be able to
access.

To verify that the caller process has the required access privileges, marshal the
pointer, and access the buffer, you should call the CeOpenCallerBuffer function.
CeOpenCallerBuffer checks access privileges based on whether the caller is running
in kernel-mode or user-mode, allocates a new virtual address for the physical memory
of the caller’s buffer, and optionally allocates a temporary heap buffer to create a copy
of the caller’s buffer. Because the mapping of the physical memory involves allocating
a new virtual address range inside the driver, do not forget to call CeCloseCallerBuffer
when the driver has finished its processing.

Handling Buffers
Having performed implicit (parameter pointers) or explicit (embedded pointers)
access checks and pointer marshaling, the device driver is ready to access the buffer.
However, access to the buffer is not exclusive. While the device driver reads data from
and writes data to the buffer, the caller might also read and write data concurrently, as
illustrated in Figure 6–10. Security issues can arise if a device driver stores marshaled
pointers in the caller's buffer. A second thread in the application could then
manipulate the pointer to access a protected memory region through the driver. For
this reason, drivers should always make secure copies of the pointers and buffer size
values they receive from a caller and copy embedded pointers to local variables to
prevent asynchronous modification.

IMPORTANT Asynchronous buffer handling

Never use pointers in the caller's buffer after they have been marshaled, and do not use the
caller's buffer to store marshaled pointers or other variables required for driver processing. For
example, copy buffer size values to local variables so that callers cannot manipulate these values
to cause buffer overruns. One way to prevent asynchronous modification of a buffer by the
caller is to call CeOpenCallerBuffer with the ForceDuplicate parameter set to TRUE to copy the
data from the caller’s buffer to a temporary heap buffer.

294 Chapter 6 Developing Device Drivers

Figure 6-10 Manipulating a marshaled pointer in a shared buffer

Synchronous Access
Synchronous memory access is synonymous with non-concurrent buffer access. The
caller’s thread waits until the function call returns, such as DeviceIoControl, and
there are no other threads in the caller process that access the buffer while the driver
performs its processing tasks. In this scenario, the device driver can use parameter
pointers and embedded pointers (after a call to CeOpenCallerBuffer) without
additional precautions.

The following is an example of accessing a buffer from an application synchronously.
This sample source code is an exerpt from an XXX_IOControl function of a stream
driver:

BOOL SMP_IOControl(DWORD hOpenContext, DWORD dwCode,

 PBYTE pBufIn, DWORD dwLenIn,

 PBYTE pBufOut, DWORD dwLenOut,

 PDWORD pdwActualOut)

{

 BYTE *lpBuff = NULL;

 ...

 if (dwCode == IOCTL_A_WRITE_FUNCTION)

 {

 // Check parameters

 if (pBufIn == NULL || dwLenIn != sizeof(AN_INPUT_STRUCTURE))

 {

 DEBUGMSG(ZONE_IOCTL, (TEXT("Bad parameters\r\n")));

 return FALSE;

 }

 // Access input buffer

 hrMemAccessVal = CeOpenCallerBuffer((PVOID) &lpBuff,

 (PVOID) pBufIn,

User-Mode Application Kernel-Mode Driver

CeOpenCallerBufferMemory Buffer

0x1FFF FFFF

0x8000 0000

0x7C00 0000

Lesson 6: Marshaling Data across Boundaries 295

 dwLenIn,

 ARG_I_PTR,

 FALSE);

 // Check hrMemAccessVal value

 // Access the pBufIn through lpBuff

 ...

 // Close the buffer when it is no longer needed

 CeCloseCallerBuffer((PVOID)lpBuff, (PVOID)pBufOut,

 dwLenOut, ARG_I_PTR);

 }

...

}

Asynchronous Access

Asynchronous buffer access assumes that multiple caller and driver threads access
the buffer sequentially or concurrently. Both scenarios present challenges. In the
sequential access scenario, the caller thread might exit before the driver thread has
f in i s he d i t s p ro c e s s i n g . B y c a l l i ng t he m a r s h a l i n g h e l pe r f u n c t i o n
CeAllocAsynchronousBuffer, you must re-marshal the buffer after it was marshaled by
CeOpenCallerBuffer to ensure in the driver that the buffer remains available even if
t he c a l l e r ’ s a d d re s s s p a c e i s u n a v a i l a b l e . D o n o t fo rge t to c a l l
CeFreeAsynchronousBuffer after the driver has finished its processing.

To ensure that your device driver works in kernel and user mode, use the following
approach to support asynchronous buffer access:

■ Pointer parameters Pass pointer parameters as scalar DWORD values and
then call CeOpenCallerBuffer and CeAllocAsynchronousBuffer to perform
a c c e s s c he c k s a n d m ar s h a l i n g . Not e t ha t you c a n n o t c a l l
CeAllocAsynchronousBuffer on a pointer parameter in user-mode code or
perform asynchronous write-back of O_PTR or IO_PTR values.

■ Embedded pointers Pass embedded pointers to CeOpenCallerBuffer and
CeAllocAsynchronousBuffer to perform access checks and marshaling.

To address the second scenario of concurrent access, you must create a secure copy of
the buffer after marshaling, as mentioned earlier. Calling CeOpenCallerBuffer with
the ForceDuplicate parameter set to TRUE and CeCloseCallerBuffer is one option.
Another is to call CeAllocDuplicateBuffer and CeFreeDuplicateBuffer for buffers

296 Chapter 6 Developing Device Drivers

referenced by parameter pointers. You can also copy a pointer or buffer into a stack
variable or allocate heap memory by using VirtualAlloc and then use memcpy to copy
the caller’s buffer. Keep in mind that if you do not create a secure copy, you’re leaving
in a vulnerability that a malicious application could use to take control of the system.

Exception Handling
Another important aspect that should not be ignored in asynchronous buffer access
scenarios revolves around the possibility that embedded pointers might not point to
valid memory addresses. For example, an application can pass a pointer to a driver
that refers to an unallocated or reserved memory region, or it could asynchronously
free the buffer. To ensure a reliable system and prevent memory leaks, you should
enclose buffer-access code in a __try frame and any cleanup code to free memory
allocations in a __finally block or an exception handler. For more information about
exception handling, see Chapter 3, “Performing System Programming.”

Lesson Summary
Windows Embedded CE 6.0 facilitates inter-process communication between
applications and device drivers through kernel features and marshaling helper
functions that hide most of the complexities from driver developers. For parameter
pointers, the kernel performs all checks and pointer marshaling automatically. Only
embedded pointers require extra care because the kernel cannot evaluate the content
of application buffers passed to a driver. Validating and marshaling an embedded
pointer in a synchronous access scenario involves a straightforward call to
CeOpenCallerBuffer. Asynchronous access scenarios, however, require an additional
call to CeAllocAsynchronousBuffer to marshal the pointer one more time. To ensure
that your driver does not introduce system vulnerabilities, make sure you handle
buffers correctly, create a secure copy of the buffer content so that callers cannot
manipulate the values, and do not use pointers or buffer size values in the caller's
buffer after they have been marshaled. Never store marshaled pointers or other
variables required for driver processing in the caller's buffer.

Lesson 7: Enhancing Driver Portability 297

Lesson 7: Enhancing Driver Portability
Device drivers help to increase the flexibility and portability of the operating system.
Ideally, they require no code changes to run on different target devices with varying
communication requirements. There are several relatively straightforward techniques
that you can use to make your drivers portable and reusable. One common approach
is to maintain configuration settings in the registry instead of hardcoding the
parameters into the OAL or the driver. Windows Embedded CE also supports a
layered architecture based on MDD and PDD that you can leverage in your device
driver design, and there are further techniques that you can use to implement drivers
in a bus-agnostic way to support peripheral devices regardless of the bus type to
which they are connected.

After this lesson, you will be able to:

■ Describe how to use registry settings to increase the portability and reusability of a
device driver.

■ Implement a device driver in a bus-agnostic way.

Estimated lesson time: 15 minutes.

Accessing Registry Settings in a Driver
To increase the portability and reusability of a device driver, you can configure registry
entries, which you should add to the driver’s registry subkey. For example, you can
define I/O-mapped memory addresses or settings for installable ISRs that the device
driver loads dynamically. To access the entries in a device driver’s registry key, the
driver has to identify where its own settings are located. This is not necessarily the
HKEY_LOCAL_MACHINE\Drivers\BuiltIn key. However, the correct path
informat ion is avai lable in t he Key value that you can f ind under the
HKEY_LOCAL_MACHINE\Drivers\Active key in the loaded driver’s subkey. Device
Manager passes the path to the driver’s Drivers\Active subkey to the XXX_Init
function in the LPCTSTR pContext parameter. The device driver can then use this
LPCTSTR value in a call to OpenDeviceKey to obtain a handle to the device’s registry
key. It is not necessary to read the Key values from the driver’s Drivers\Active subkey
directly. The handle returned by OpenDeviceKey points to the driver’s registry key,
which you can use like any other registry handle. Most importantly, do not forget to
close the handle when it is no longer needed.

298 Chapter 6 Developing Device Drivers

TIP XXX_Init function and driver settings

The XXX_Init function is the best place to determine all configuration settings for a driver
defined in the registry. Rather than accessing the registry repeatedly in subsequent stream func-
tion calls, it is good practice to store the configuration information in the device context created
and returned to Device Manager in response to the XXX_Init call.

Interrupt-Related Registry Settings
If your device driver must load an installable ISR for a device and you want to increase
the portability of your code, you can register the ISR handler, IRQ, and SYSINTR
values in registry keys, read these values from the registry when initializing the driver,
verify that the IRQ and SYSINTR values are valid, and then install the specified ISR by
using the LoadIntChainHandler function.

Table 6–9 lists the registry entries that you can configure for this purpose. By calling
the DDKReg_GetIsrInfo function, you can then read these values and pass them to
the LoadIntChainHandler function dynamically. For more information about
interrupt handing in device drivers, see Lesson 4, “Implementing an Interrupt
Mechanism in a Device Driver,” earlier in this chapter.

Table 6-9 Interrupt-related registry entries for device drivers

Registry
Entry

Type Description

IRQ REG_DWORD Specifies the IRQ used to request a SYSINTR for
setting up an IST within the driver.

SYSINTR REG_DWORD Specifies a SYSINTR value to use for setting up an
IST within the driver.

IsrDll REG_SZ The filename of the DLL containing the installable
ISR.

IsrHandler REG_SZ Specifies the entry point for the installable ISR that
the specified DLL exposes.

Lesson 7: Enhancing Driver Portability 299

Memory-Related Registry Settings
Memory-related registry values enable you to configure a device through the registry.
Table 6–10 lists the memory-related registry information that a driver can obtain in a
DDKWINDOWINFO structure by calling DDKReg_GetWindowInfo. By using the
BusTransBusAddrToVirtual function, you can map the bus addresses of memory-
mapped windows to physical system addresses you can then translate into virtual
addresses by using MnMapIoSpace.

PCI-Related Registry Settings
Another registry helper function that you can use to populate a DDKPCIINFO
structure with the standard PCI device instance information is DDKReg_GetPciInfo.
Table 6–11 lists the PCI-related settings you can configure in a driver's registry subkey.

Table 6-10 Memory-related registry entries for device drivers

Registry
Entry

Type Description

IoBase REG_DWORD A bus-relative base of a single memory-mapped
window used by the device.

IoLen REG_DWORD Specifies the length of the memory-mapped
window defined in IoBase.

MemBase REG_MULTI_SZ A bus-relative base of multiple memory-mapped
windows used by the device.

MemLen REG_MULTI_SZ Specifies the length of the memory-mapped
memory windows defined in MemBase.

Table 6-11 PCI-related registry entries for device drivers

Registry Entry Type Description

DeviceNumber REG_DWORD The PCI device number.

FunctionNumber REG_DWORD The PCI function number of the device,
which indicates a single function device
on a multifunction PCI card.

InstanceIndex REG_DWORD The instance number of the device.

300 Chapter 6 Developing Device Drivers

Developing Bus-Agnostic Drivers
Similar to settings for installable ISRs, memory-mapped windows, and PCI device
instance information, you can maintain any GPIO numbers or timing configurations
in the registry and achieve in this way a bus-agnostic driver design. The underlying
idea of a bus-agnostic driver is the support of multiple bus implementations for the
same hardware chipset, such as PCI or PCMCIA, without requiring code
modifications.

To implement a bus-agnostic driver, use the following approach:

1. Maintain all necessary configuration parameters in the driver’s registry subkey,
a n d u s e t h e W i n d ows E m b e d de d C E re g i s t r y h e l p e r f un ct i o n s
DDKReg_GetIsrInfo, DDKReg_GetWindowInfo, and DDKReg_GetPciInfo to
retrieve these settings during driver initialization.

2. Call HalTranslateBusAddress to translate bus-specific addresses to system
physical addresses and then call MmMapIoSpace to map the physical addresses
to virtual addresses.

DeviceID REG_DWORD The type of the device

ProgIF REG_DWORD A register-specific programming
interface, for example, USB OHCI or
UHCI.

RevisionId REG_DWORD The revision number of the device.

Subclass REG_DWORD The basic function of the device; for
example, an IDE controller.

SubSystemId REG_DWORD The type of card or subsystem that uses
the device.

SubVendorId REG_DWORD The vendor of the card or subsystem that
uses the device.

VendorId REG_MULTI_SZ The manufacturer of the device.

Table 6-11 PCI-related registry entries for device drivers (Continued)

Registry Entry Type Description

Lesson 7: Enhancing Driver Portability 301

3. Reset the hardware, mask the interrupt, and load an installable ISR by calling the
LoadIntChainHandler funct ion wi t h infor mat ion obt a ined f rom
DDKReg_GetIsrInfo.

4. Load any initialization settings for the installable ISR from the registry by using
RegQueryValueEx and pass the values to the installable ISR in a call to
KernelLibIoControl with a user-defined IOCTL. For example, the Generic
Installable Interrupt Service Routine (GIISR) included in Windows Embedded
CE uses an IOCTL_GIISR_INFO handler to initialize instance information that
enables GIISR to recognize when the device’s interrupt bit is set and return the
corresponding SYSINTR value. You can f ind the source code in the
C:\Wince600\Public\Common\Oak\Drivers\Giisr folder.

5. Begin the IST by calling the CreateThread function and unmask the interrupt.

Lesson Summary
To increase the portability of a device driver, you can configure the registry entries in
the driver’s registry subkey. Windows Embedded CE provides several registry helper
fu n ct io ns t ha t you can t hen u se to re t r i eve t he se se t t ing s , suc h as
DDKReg_GetIsrInfo, DDKReg_GetWindowInfo, and DDKReg_GetPciInfo. These
helper functions query specific information for installable ISRs, memory-mapped
windows, and PCI device inst ance infor mat ion, yet you can a lso ca l l
RegQueryValueEx to retrieve values from other registry entries. However, to use any
of these registry functions, you must first obtain a handle to the driver’s registry
subkey by calling OpenDeviceKey. OpenDeviceKey expects a registry path, which
Device Manager passes to the driver in the XXX_Init function call. Do not forget to
close the registry handle when it is no longer needed.

302 Chapter 6 Developing Device Drivers

Lab 6: Developing Device Drivers
In this lab, you implement a stream driver that stores and retrieves a string of 128
Unicode characters in memory. A base version of this driver is available in the
companion material for this book. You only need to add the code as a subproject to an
OS design. You then configure .bib file and registry settings to load this driver
automatically during boot time and create a WCE Console Application to test the
driver’s functionality. In a last step, you add power management support to the string
driver.

NOTE Detailed step-by-step instructions

To help you successfully master the procedures presented in this Lab, see the document
“Detailed Step-by-Step Instructions for Lab 6” in the companion material for this book.

� Add a Stream Interface Driver to a Run-Time Image

1. Clone the Device Emulator BSP and create an OS design based on this BSP as
outlined in Lab 2, “Building and Deploying a Run-Time Image.”

2. Copy the string driver source code that you can find on the companion CD in
the \Labs\StringDriver\String folder into your BSP folder in the path
%_WINCEROOT%\Platform\<BSPName>\Src\Drivers. This should result in a
folder named String in your platform in the Drivers folder, and immediately
inside this folder you should have the files from the driver on the companion
CD, such as sources, string.c, string.def. It’s possible to write a driver from
scratch, but starting from a working example such as this is much quicker.

3. Add an entry to the Dirs file in the Drivers folder above your new String folder to
include the string driver into the build process.

CAUTION Include In Build option

Do not use the Include In Build option in Solution Explorer to include the string driver into the
build process. Solution Explorer removes important CESYSGEN directives from the Dirs file.

4. Add an entry to Platform.bib to add the built string driver, contained in
$(_FLATRELEASEDIR), to the run-time image. Mark the driver module as a
hidden system file.

5. Add the following line to Platform.reg to include the string driver’s .reg file into
the run-time image’s registry:

Lab 6: Developing Device Drivers 303

#include "$(_TARGETPLATROOT)\SRC\DRIVERS\String\string.reg"

6. Build the string driver by right clicking it in Solution Explorer and selecting
Build.

7. Make a new run-time image in Debug mode.

NOTE Building the run-time image in Release mode

If you want to work with the Release version of the run-time image, you must change the
DEBUGMSG statements in the driver code to RETAILMSG statements to output the driver
messages.

8. Open the generated Nk.bin in the flat release directory to verify that it contains
String.dll and registry entries in the HKEY_LOCAL_MACHINE\Drivers
\BuiltIn\String subkey to load the driver at startup.

9. Load the generated image on the Device Emulator.

10. Open the Modules window after the image starts by pressing CTRL+ALT+U, or
open the Debug menu in Visual Studio, point to Windows, and then select
Modules. Verify that the system has loaded string.dll, as illustrated in Figure 6–11.

Figure 6-11 Modules window with loaded string driver

� Access the Driver from an Application

1. Create a new WCE Console Application subproject as part of your OS design by
using the Windows Embedded CE Subproject Wizard. Select WCE Console
Application and the template A Simple Windows Embedded CE Console
Application.

304 Chapter 6 Developing Device Drivers

2. Modify the subproject image settings to exclude the subproject from the image
by right clicking the OS design name in the solution view and selecting
Properties.

3. Include <windows.h> and <winioctl.h>

4. Add code to the application to open an instance of the driver by using CreateFile.
For the second CreateFi le parameter (dwDesiredAccess) , pass in
G EN ER I C _ R E AD | G E N ER I C _ W R I T E . Fo r t he f i f t h pa ra m e t e r
(dwCreationDisposition), pass in OPEN_EXISTING. If you open the driver with
the $device naming convention, be sure to escape the slashes and not include
the colon at the end of the filename.

HANDLE hDrv = CreateFile(L"\\$device\\STR1",

 GENERIC_READ|GENERIC_WRITE,

 0, 0, OPEN_EXISTING, 0, 0);

5. Copy the IOCTL header file (String_ioctl.h) from the string driver folder to the
new application’s folder and include it in the source code file.

6. Declare an instance of a PARMS_STRING structure defined in
String_iocontrol.h, included along with the rest of the sample string driver, to
enable applications to store a string in the driver using the following code:

PARMS_STRING stringToStore;

wcscpy_s(stringToStore.szString,

 STR_MAX_STRING_LENGTH,

 L"Hello, driver!");

7. Use a DeviceIoControl call with an I/O control code of IOCTL_STRING_SET to
store this string in the driver.

8. Run the application by building it and selecting Run Programs from the Target
menu.

9. The Debug window should show the message Stored String "Hello, driver!"
Successfully when you run the application, as shown in Figure 6–12.

Figure 6-12 A debug message from the string driver

Lab 6: Developing Device Drivers 305

� Adding Power Management Support

1. Turn off and detach from the Device Emulator.

2. Add the IClass for generic power management devices with the following line to
the string driver’s registry key in String.reg:

"IClass"=multi_sz:"{A32942B7-920C-486b-B0E6-92A702A99B35}"

3. Add the power management code that you can find in the
StringDriverPowerCode.txt file under \Labs\StringDriver\Power on the
companion CD to the string driver’s IOControl function to support
I O C T L _ P OW E R _ G E T, I O C T L _ P OW E R _ S E T, a n d
IOCTL_POWER_CAPABILITIES.

4. Add code to the string driver’s device context so it stores its current power state:

CEDEVICE_POWER_STATE CurrentDx;

5. Add the header <pm.h> to the application, and add calls to SetDevicePower with
the name of the string driver and different power states; for example:

SetDevicePower(L"STR1:", POWER_NAME, D2);

6. Run the application again, and observe the power state–related debug messages
when Power Manager changes the string driver’s power state, as shown in Figure
6–13.

Figure 6-13 Power management–related debug messages from the string driver

306 Chapter 6 Review

Chapter Review
Windows Embedded CE 6.0 is extraordinarily modular in its design and supports
ARM-, MIPS-, SH4-, and x86–based boards in a multitude of hardware configurations.
The CE kernel contains the core OS code and the platform-specific code resides in the
OAL and in device drivers. In fact, device drivers are the largest part of the BSP for an
OS design. Rather than accessing the hardware directly, the operating system loads
the corresponding device drivers, and then uses the functions and I/O services that
these drivers provide.

Windows Embedded CE device drivers are DLLs that adhere to a well-known API so
that the operating system can load them. Native CE drivers interface with GWES
while stream drivers interface with Device Manager. Stream drivers implement the
stream interface API so that their resources can be exposed as special file system
resources. Applications can use the standard file system APIs to interact with these
drivers. The stream interface API also includes support for IOCTL handlers, which
come in handy if you want to integrate a driver with Power Manager. For example,
Powe r M a n a ge r c a l l s X X X _ I O Co n t ro l w i t h a n I O Co n t ro l c o de o f
IOCTL_POWER_SET passing in the requested device power state.

Native and stream drivers can feature a monolithic or layered design. The layered
design splits the device driver logic in an MDD and a PDD part, which helps to
increase the reusability of the code. The layered design also facilitates driver updates.
Windows Embedded CE also features a flexible interrupt-handling architecture based
on ISRs and ISTs. The ISR's main task is to identify the interrupt source and notify the
kernel with a SYNTINR value about the IST to run. The IST performs the majority of
the processing, such as time-consuming buffer copying processes.

In general, you have two options to load a driver under Windows Embedded CE 6.0.
You can add the driver’s registry settings to the BuiltIn registry key to start the driver
automatically during the boot process or you load the driver automatically in a call to
ActivateDeviceEx. Depending on the driver’s registry entries, you can run a driver in
kernel mode or user mode. Windows Embedded CE 6.0 includes a user-mode driver
host process and a Reflector service that enables most kernel-mode drivers to run in
user mode without code modifications. Because device drivers run in different
process spaces than applications on Windows Embedded CE 6.0, you must marshal
the data in either a mapping of physical memory sections or copying process to
facilitate communication. It is imperative to validate and marshal embedded pointers
by calling CeOpenCallerBuffer and CeAllocAsynchronousBuffer and properly

Chapter 6 Review 307

handling asynchronous buffer access so that a user application cannot exploit a
kernel-mode driver to take over the system.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ IRQ

■ SYSINTR

■ IST

■ ISR

■ User mode

■ Marshaling

■ Stream interface

■ Native interface

■ PDD

■ MDD

■ Monolithic

■ Bus-agnostic

Suggested Practice
To help you successfully master the exam objectives presented in this chapter,
complete the following tasks:

Enhance Power Management Features
Continue to develop the string driver’s power management code.

■ Clear the string buffer Modify the string driver to delete the contents of the
string buffer when the device driver switches into the power state D3 or D4.

■ Change the power capabilities See what happens when you return a different
POWER_CAPABILITIES value to Power Manager.

308 Chapter 6 Review

More IOCTLs
Expand on the features of the string driver by adding more IOCTL handlers.

■ Reverse the stored string Add an IOCTL to reverse the contents of the string
in the buffer.

■ Concatenate a string Add an IOCTL that concatenates a second string to the
string stored without overrunning the buffer.

■ Embedded pointers Replace the string parameter with a pointer to a string
and access it with CeOpenCallerBuffer.

Installable ISR
Learn more about installable ISRs by reading the product documentation.

■ Learn more about installable ISRs Read the section “Installable ISRs and
Device Drivers” in the Windows Embedded CE 6.0 Documentation, available on
the Microsoft MSDN Web site at http://msdn2.microsoft.com/en-us/library/
aa929596.aspx to learn more about installable ISRs.

■ Find an example of an installable ISR Find an example of an installable ISR
and study its structure. A good starting point is the GIISR code that you can find
in the %_WINCEROOT%\Public\Common\Oak\Drivers\Giisr folder.

309

Glossary
Application Programming Interface (API) An

API is the function interface that an
operating system or library provides to
support requests from application
programs.

Application Verifier (AppVerifier) AppVerifier
enables developers to find subtle
programming errors, such as heap
corruption and incorrect handle usage, that
can be difficult to identify with normal
application testing

Asynchronous Access When two or more
threads access the same buffer at the same
time.

Binary Image Builder (.bib) A .bib file defines
which modules and files are included in a
run-time image.

Boot Loader Piece of code executed at the
processor startup to initialize the processor
and then launch an operating system.

Board Support Package (BSP) A BSP is the
common name for all board hardware-
specific code. It typically consists of the boot
loader, the OEM adaptation layer (OAL),
and board-specific device drivers.

Catalog A container of components that
presents a selectable feature for an OSDesign
to the user.

Debugger Extension Commands (CeDe-
bugX) CeDebugX is an extension to the

Platform Builder debugger. It presents
detailed information about the state of the
system at break time and attempts to
diagnose crashes, hangs, and deadlocks.

Windows Embedded CE Test Kit (CETK) The
CETK is a tool you can use to test device

drivers that you develop for the Windows
Embedded CE operating system.

Cloning During cloning, you generate an
exact copy of files to keep a secure copy of
them before performing modifications. Code
in the PUBLIC folder should always be
cloned before making modifications.

Component A CE feature that can be added
to or removed from an OS Design using the
catalog.

Core Connectivity (CoreCon) Windows CE
supports a unified communications
infrastructure called Core Connectivity that
enables full-featured connectivity for
downloading and debugging.

Critical Section An object with a
synchronization process that is similar to a
mutex object. The difference is that a critical
section can only be accessed by the threads
of a single process.

Data Marshaling A process done on data to
check the access rights and validity of the
data for a different process.

Debug Zone A flag to enable or disable debug
messages related to a certain functionality or
mode of a driver.

Device Driver A device driver is software that
manages the operation of a device by
abstracting the functionality of a physical or
virtual device.

Dirs File A Dirs file is a text file that specifies
the subdirectories that contain source code
to be built.

Embedded Pointer A pointer embedded in a
memory structure.

310 Glossary

Environment Variable A Windows
environment variable that can enable or
disable features. It is generally used to
configure the build system and OS design
from the catalog

Event Synchronization objects used by
threads and the kernel to notify other
threads in the system.

Exception An exception is an abnormal
situation that happens while a program is
running.

Iltiming Iltiming determines interrupt service
routine (ISR) and interrupt service thread
(IST) latencies on a Windows Embedded CE
system.

Interrupt A trigger that suspends (interrupts)
the system temporarily to indicate that
something has happened that requires
processing. Each interrupt on a system is
associated with a particular Interrupt
Request (IRQ) value and this IRQ value is
associated with one or more ISR.

Interrupt Service Routine (ISR) An ISR is a
software routine that hardware invokes in
response to an interrupt. ISRs examine an
interrupt and determine how to handle it by
returning a SYSINTR value, which is then
associated with an IST.

Interrupt Service Thread (IST) The IST is a
thread that does most of the interrupt
processing. The OS wakes the IST when the
OS has an interrupt to process. After each
IST is associated to a SYSINTR value, the
SYSINTR value can be returned from an ISR,
and then the associated IST runs.

IRQ (Interrupt Request) IRQ values are
associated in hardware with interrupts. Each
IRQ value can be associated with one or
more ISRs that the system will run to
process the associated interrupt when it is
triggered.

Kernel Debugger The kernel debugger
integrates functionality required to
configure a connection to a target device and
download a run-time image to the target
device. It allows the debugging of the OS,
abbreviate drivers, and applications.

Kernel Independent Transport Layer (KITL)
The KITL is designed to provide an easy way to

support debugging services.

Kernel-Mode Driver A driver that runs in the
kernel’s memory space.

Kernel Tracker This tool provides a visual
representation on a development
workstation of OS and application events
occurring on a Windows Embedded CE–
based device.

Layered Driver A driver that is separated into
several layers to make it easier to maintain
and reuse code at a later date.

Model Device Driver (MDD) The MDD layer
of a layered driver has a standardized
interface to the OS and Platform Device
Driver (PDD) layer and performs all
hardware independent processing related to
the driver.

Monolithic Driver A driver that is not
separated into different layers. It can also
mean any driver that does not conform to
the standard Model Device Driver (MDD)/
Platform Device Driver (PDD) layer
architecture of CE, even if the driver does
have its own layering scheme.

Mutex A mutex object is a synchronization
object whose state is set to signaled when it
is not owned by any thread and nonsignaled
when it is owned. A mutex can only be
owned by a single thread at a time. It is used
to represent a resource that should only be
accessed by one thread at any given time,
such as a global variable or a hardware
device.

Glossary 311

Native Driver Touchscreen, Keyboard and
Display drivers are the only native drivers
existing in Windows Embedded CE and are
managed by GWES rather than Device
Manager.

OEM adaptation layer (OAL) An OAL is a
layer of code that logically resides between
the Windows Embedded CE kernel and the
hardware of your target device. Physically,
the OAL is linked with the kernel libraries to
create the kernel executable file.

Operating System Benchmark (OSBench) A
tool that is used to measure the performance
of the scheduler.

OS Design A Platform Builder for Windows
Embedded CE6 R2 project that generates a
customized binary runtime image of the
Windows Embedded CE6 R2 operating
system

Platform Dependent Driver (PDD) The PDD
layer of a layered driver is the part that
interfaces directly with hardware and
performs any hardware-specific processing.

Power Manager Controls the power
consumption of the system by assigning a
power state between D0 (fully on) and D4
(fully off) to the system as a whole and to
individual drivers. It coordinates transitions
between these states based on user and
system activity, as well as specified
requirements.

Process A process is a program in Windows
Embedded CE. Each process can have
multiple threads. A process can run in either
user space or in kernel space.

Production Quality OAL (PQOAL) The
PQOAL is a standardized OAL structure that
simplifies and shortens the process of
developing an OAL. It provides you with an
improved level of OAL componentization
through code libraries, directory structures
that support code reuse, centralized

configuration files, and a consistent
architecture across processor families and
hardware platforms.

Quick Fix Engineering (QFE) Windows
Embedded CE patches that are available
from Microsoft’s website. They fix bugs and
provide new features.

Reflector Service The service that allows user
mode drivers to access the kernel and
hardware by performing requests on their
behalf.

Registry The information store for Windows
Embedded CE that contains configuration
information for hardware and software
components.

Remote Performance Monitor This
application can track the real-time
performance of the operating system. It can
also track memory usage, network latencies,
and other elements

Run-time image The binary file that will be
deployed on a hardware device . It also
contains the complete operating system
required files for applications and drivers.

Semaphore A semaphore object is a
synchronization object that protects access
to a hardware or software resource, allowing
only a fixed number of concurrent threads
to access it. The semaphore maintains a
count between zero and a specified
maximum value. The count is decremented
each time a thread completes a wait for the
semaphore object and incremented each
time a thread releases the semaphore. When
the count reaches zero, no more threads can
access the resource protected by the
semaphore. The state of a semaphore is set
to signaled when its count is greater than
zero and nonsignaled when its count is zero.

Shell The shell is the software that will
interpret user interactions with the device. It

312 Glossary

launches when the device starts up. The
default shell is called AYGShell and includes
a desktop, start menu, and taskbar similar to
those in desktop versions of Windows.

Software Development Kit (SDK) Used to
allow third-party developers to make
applications for a customized Windows
Embedded CE6 R2 run-time image

Sources File A Sources file is a text file that
sets macro definitions for the source code in
a subdirectory. Build.exe uses these macro
definitions to determine how to compile and
link the source code.

Stream Interface Driver A stream interface
driver is any driver that exposes the stream
interface functions, regardless of the type of
device controlled by the driver. All drivers
other than the native drivers managed by
GWES export a stream interface.

Subproject A set of files that you can easily
integrate, remove and reuse in an OSDesign.

Synchronization Objects A synchronization
object is an object whose handle can be
specified in one of the wait functions to
coordinate the execution of multiple
threads.

Synchronous Access When two or more
separate threads are working with the same
buffer. Only one thread can access the buffer
at any given time and no other threads
access the buffer until the current thread is
finished with it.

Sysgen The Sysgen phase is the first step in
the build process done to filter the public
and BSP folders. It identifies the files
associated with the components selected in

an OSDesign. During this phase,
components selected in the OS Design are
linked into executables and copied into the
OS Design’s folder.

Sysgen Variable A directive to the sysgen
phase of the CE build process where
selected CE features are linked together.

SYSINTR The value that corresponds to an
IRQ. It is used to signal an associated event.
This value is returned by an ISR in response
to an interrupt.

Target Control Shell A shell in Platform
Builder for Visual Studio providing access to
debugger commands. The target control
shell will be available when attached to a
target system through KITL.

Thread The smallest software unit that the
scheduler can manage on the OS. There can
be multiple threads in a single driver or
application.

User Mode Drivers loaded in user mode and
all applications run in user memory space.
When they are in this mode, drivers and
applications do not have direct access to
hardware memory and have restricted access
to certain APIs and the kernel.

Virtual Memory Virtual memory is a way of
abstracting the physical memory in a system
to appear contiguous to processes that use it.
Each process in Windows Embedded CE 6.0
R2 has two gigabytes of virtual memory
space available, and to access physical
memory from a process this memory must
be mapped into the virtual address space of
the process using MmMapIoSpace or
OALPAtoVA.

313

Index
.NET Compact Framework 2.0 4, 29
.pbcxml files 21
.tks files. See Test Kit Suite (.tks) files
__except keyword 120
__finally keyword 121
__try keyword 121
32 processes limitation 219
3rdParty folder 22
4 GB address space 219

A
abstraction between the underlying hardware and the

operating system 243
access checks 293
ActivateDevice function 258
ActivateDeviceEx function 258
ActiveSync 4, 29, 178
activity timers 128

registry settings for 129
address mappings

virtual-to-physical 213
address table 213
ADEFINES directive 60
ad-hoc solutions 21
Advanced Build Commands 24, 43

Rebuild Current BSP And Subprojects 24
advanced debugger tools 161
Advanced Memory tool 162
AdvertiseInterface function 264, 284
alerts 90
AllocPhysMem function 226, 279, 290
analyzing build results 63–67
analyzing CETK test results 184
API. See application programming interface (API)
applets 97–98, 100
application caller buffer 291
application debugging 149
application programming interface (API) 11

CPlApplet API 98
Critical Section API 111
Event API 114
file system API 247
GetProcAddress API 243
Interlock API 115
Mutex API 112
non-real-time 84
Power Manager APIs 126

Process Management API 104, 130
SignalStarted API 93
stream interface API 247, 250
Thread Management API 104
Win32 API 84

application shortcuts on the desktop 55
Application Verifier tool 162, 179
architecture-generic tasks 214
ARM–based platforms 223
assembly language 188
ASSERTMSG macro 151
associating an OS design with multiple BSPs 10
asynchronous buffer access 288, 293
ATM. See automated teller machines (ATM)
attaching to a target device 71
audio device driver registration 262
Autoexit parameter 182
automated software testing 176
automated teller machines (ATM) 101
automatic loading of drivers 259
automatic startup 91
Autorun parameter 181
Autos tool 161
AUTOSIZE parameter 49

B
backlight driver 25
battery life 125

battery critically low state 229
battery level reaches zero 232
Power Manager (PM.dll) and 127

best practices for debug zones 157
binary image builder (.bib) files 46

automatic startup 47
AUTOSIZE parameter 49
BOOTJUMP parameter 49
COMPRESSION parameter 49
conditional processing in 53
CONFIG section 49
file type definitions in 52
FILES section 51
FIXUPVAR parameter 50
FSRAMPERCENT parameter 50
H flag 271
K flag 270
KERNELFIXUPS parameter 50
MEMORY section 48

314 Index

MODULES section 51
NK memory region 270
noncontiguous memory and 49
OUTPUT parameter 50
PROFILE parameter 50
Q flag 271
RAM_AUTOSIZE parameter 50
RAMIMAGE parameter 49
RESETVECTOR parameter 50
ROM_AUTOSIZE parameter 50
ROMFLAGS parameter 50
ROMOFFSET parameter 50
ROMSIZE parameter 50
ROMSTART parameter 50
ROMWIDTH parameter 50
S flag 271
sections of 47
SRE parameter 50
X86BOOT parameter 51
XIPSCHAIN parameter 51

binary ROM image file system (BinFS) 187
black shell 101
BLCOMMON framework 187
Bluetooth 29
Board Support Package (BSP) 3, 168, 197–239

adapting and configuring 199–218
boot loader and 201
cloning an existing reference BSP 201

advanced debugger tools 202
Cloning Wizard 202
components of a 200
configuration files 199, 201
device drivers and 201
folder structure of a 203
hardware-independent code and 201
memory mapping of a 219–227
OEM adaptation layer (OAL) and 201
platform-specific source code 205
reducing development time 201
serial debug output functions and 209
source code folders for device drivers 217

Board Support Packages wizard page 10
boot arguments (BootArgs) 171

driver globals and 207
boot loader

architecture 186
assembly language and 188
binary ROM image file system (BinFS) and 187
BLCOMMON framework 187
Board Support Package (BSP) and 201
BootLoaderMain function 209
BOOTME packet 212
Bootpart 187

code sharing between the OAL and the 214
debugging techniques for 188
driver globals and 207
Eboot 187
Ethdbg 205
Ethernet support functions 210
flash memory support 211
general task of a 186
hardware initialization tasks 209
kernel initialization routines and 187
memory mappings for a 206
menu of a 211
network drivers and 188
run-time image download via Ethernet 210
serial debug output functions and 209
StartUp entry point 208
testing 186
typical tasks of a 186

BootArgs. See boot arguments (BootArgs)
BOOTJUMP parameter 49
BootLoaderMain function 209
BOOTME packet 212
Bootpart 187
bootstrap service 148
breaking into the debugger 119
breakpoints 149, 161

enabling and managing 171
hardware and 174
interrupt handlers and 173
restrictions 173
setting too many 173
Tux DLLs and 184

BSP development 24
BSP. See Board Support Package (BSP)
Bsp_cfg.h file 276
BSPIntrInit function 277
buffer handling 293
buffer marshaling 268
buffer overrun 274
Buffer Tracked Events In RAM option 9
build commands 42

command line equivalents for 46
build configuration files 57–62
build configuration management 6

Advanced Build Commands 24
build configuration files 57–62
build directives 59
build options 8
Clean Sysgen command and 45
configurations files 14
Environment options 10
image configuration files 56
program database (.pdb) files 6

Index 315

project properties 6
source control software 12
Strict Localization Checking In The Build option 8
subproject image settings 16

Build menu 41
build options 3

active OS design and 8
Buffer Tracked Events In RAM 9
Enable Eboot Space In Memory 9
Enable Event Tracking During Boot 9
Enable Hardware-Assisted Debugging Support 9
Enable Kernel Debugger 9, 168
Enable KITL 9, 168
Enable Profiling 9
Flush Tracked Events To Release Directory 9
Run-Time Image Can Be Larger Than 32 MB 9
Use Xcopy Instead Of Links To Populate Release Directory

10
Write Run-Time Image To Flash Memory 10

build phase 40
errors during the 66

build process 37, 39
advanced build commands 43
analyzing build results 63–67
batch files and 39
build log files 64
build phase 40
compile phase 40
Copy Files To Release Directory command 41
custom actions based on command-line tools 61
directives based on environment variables and 41
errors during the 63
make run-time image phase 41
phases during the 39
Platform Builder and 37
release copy phase 41
skipping the release copy phase 41
Software Development Kit (SDK) and 40
standard command prompt and 46
Sysgen phase 40
Visual Studio 41

build reports 63
Build tool (Build.exe) 57
Build.err file 63, 65
Build.log file 63–64
Build.wrn file 63, 65
Buildrel errors 66
BuiltIn registry key 261
bus drivers 249
Bus Enumerator (BusEnum) 261
bus name access 249
bus-agnostic drivers 300
BusEnum. See Bus Enumerator (BusEnum)

BusTransBusAddrToVirtual function 299

C
C interface 99
Call Stack tool 161
CAN. See Controller Area Network (CAN)
Catalog Editor 22

Error Report Generator 70
catalog entry properties 22
catalog files 21
Catalog Item Dependencies window 6
catalog items 3

.pbcxml files 21
3rdParty folder 22
adding or removing in an OS design 45
backlight driver 25
BSP development and 24
Clone Catalog Item option 19
cloning of 18–20
conditional processing based on 53
converting from the Public directory tree to a BSP

component 20
creating and modifying 22
dependencies of 5, 24
East Asian languages 7
exporting of 24
ID of 23
Internet Explorer 6.0 Sample Browser catalog item 32
managing 21–25
properties of 22
Windows Embedded CE Standard Shell 97

Catalog Items View 4, 31
Clone Catalog Item option 19
display item dependencies in 53
filter items in 5
search for catalog items 6
Solution Explorer and 5

catalog system 21
CDEFINES directive 60
CDEFINES entry 24
CE 6.0 OS design template. See design templates
CE Dump File Reader 70, 161, 169
CE Stress tool 179
CE target control shell (CESH) 147
Ce.bib file 47, 56
CeAllocAsynchronousBuffer function 295
CeAllocDuplicateBuffer function 295
CeCallUserProc function 268
CeCloseCallerBuffer function 293, 295
CEDebugX. See debugger extension commands (CEDebugX)
CeFreeAsynchronousBuffer function 295

316 Index

CeFreeDuplicateBuffer function 295
CeLog event-tracking system 116, 163

reference naming matching and 166
Remote Kernel Tracker tool and 164
ship builds and 164

CeLogFlush tool 164
central processing unit (CPU) 119
CeOpenCallerBuffer function 293, 295
CESH. See CE target control shell (CESH)
CESysgen folder 12
CETest.exe. See workstation server application (CETest.exe)
CETK parser (Cetkpar.exe) 185
CETK. See Windows CE Test Kit (CETK)
Chain.bin file 51
Chain.lst file 51
classical naming convention for stream drivers 248
Clean Sysgen command 43
client-side application (Clientside.exe) 177, 180

standalone mode 182
start parameters 181

cloning components 18–20
Board Support Package (BSP) and 201

advanced debugger tools 202
Clone Catalog Item option 19, 23
public tree modification 18

Cloning Wizard 202
CLR. See Common Language Runtime (CLR)
code pages 8
code reuse 197
code sharing between the boot loader and the OAL 214
command processor shell 96
comma-separated values (CSV) 185
Common Language Runtime (CLR) 101
common release directory 37
Common.bib file 47
compile phase 40
compiler and linker (Nmake.exe) 57
compiler errors 63
component cloning 18
componentized operating system 91
components of a Board Support Package (BSP) 200
COMPRESSION parameter 49
conditional file processing 53
conditional statements and debugging 158
CONFIG section 49, 83
Config.bib file 83, 224, 270, 290
configuration files for Platform Builder 12, 199
Configuration Manager 6, 11
connectivity options 68
Console registry parameters 96
Consumer Media Device design template 4
context management 252

device context 253

open context 253
Control Panel 97

components 98
CPlApplet API 98
messages 99
NEWCPLINFO information 100
Power applet 129
Sources file and 100

Controller Area Network (CAN) 4
controlling the build process 41
Copy Files To Release Directory command 41
copylink 10
Core Connectivity (CoreCon) 17

download layer for 69
infrastructure for 68
target control architecture and 148
transport mechanisms and 70

core debugging tools 167
CoreCon. See Core Connectivity (CoreCon)
CPlApplet API 98
CPU Monitor 179
CPU. See central processing unit (CPU)
CPU-accessible memory 186
CPU-dependent user kernel data 223
CreateFile function 257
CreateInstance function 280
CreateMutex function 111
CreateProcess function 268
CreateSemaphore function 112
CreateStaticMapping function 224
CreateThread function 105
creating threads 105
Critical Off state 229, 232
Critical Section API 111
critical sections 84, 110
CSV. See comma-separated values (CSV)
custom build actions based on command-line tools 61
custom CETK tests 182
custom design templates 4

D
data integrity 55
database (.db) files 46, 54
DbgMsg feature. See debug message (DbgMsg) feature
DBGPARAM variable 152
DDI. See Device Driver Interface (DDI)
DDKPCIINFO structure 299
DDKReg_GetPciInfo function 299
DDKReg_GetWindowInfo function 299
DDKWINDOWINFO structure 299
DeactivateDevice function 258

Index 317

deadlocks 115, 145, 159
Debug build configuration 6, 10
debug message (DbgMsg) feature 147
debug message options 150
debug message service 149, 155
debug zones 151

best practices for 157
bypassing of 152
DBGPARAM variable 152
definition of 154
dialog box for 155
dpCurSettings variable 156
enabling and disabling of 155, 157
overriding at startup 156
registration of 152
registry settings for 156
SetDbgZone function 155
Tux DLLs and 184
Watch window and 155

debugger extension commands (CEDebugX) 159
debugger options 70
debugging 6, 145–196

assembly language and 188
Board Support Package (BSP) and 168
boot loaders and 188
breakpoints for 149
CE Dump File Reader 161
conditional statements and 158
debug zones 151
enabling 168–175
essential components for 149
excluding debugging code from release builds 158
hardware-assisted 169
hardware-debugging interface 70
interrupt handlers and 173
kernel debugger 70
macros for debug messages 150
postmortem debugger 70, 118
retail macros for 150
serial debug output functions 209
target control commands 159
Tux DLLs 184
verbosity of 150, 158

DEBUGLED macro 151
DEBUGMSG macro 150
default locale 8
DefaultSuite parameter 181
defects on a target device 145
DEFFILE directive 61
delayed startup 95

Svcstart sample for 95
demand paging 50, 82
demonstrate the features of a new development board 4

dependency handling 93
DependXX entry 93
deploying a run-time image 68–71
design

advanced configurations 10
build options 3
catalog items 3
environment variables 10
file and directory structure 11
internationalization 7
language settings 7
multiple platforms support 10
operating system (OS) 1–35
OS design overview 3
redistribute 11
subprojects 3
template variants 4
templates 4

design template variants 4
design templates 4

Consumer Media Device 4
custom 4
Device Emulator: ARMV4I 29
Enterprise Terminal 97
PBCXML structures 4
PDA Device 4, 29
Small Footprint Device 4
Thin Client 4

DestroyInstance function 280
development cycle 145
DEVFLAGS_LOADLIBRARY flag 83
device classes 135
device context 253
device driver 13

application caller buffers and 291
Board Support Package (BSP) and 201
building a 254
bus-agnostic 300
context management 252
developing a 241–308
device register access 226
DllMain function for a 243
IClass value for a 264
interface GUIDs 264
interrupt handlers in a 272–282
IOControl function in a 244
kernel mode restrictions 268
layered driver architecture 244
legacy name for a 248
load procedure for a 261
loading and unloading 247, 258
monolithic driver architecture 244
naming conventions for 248

318 Index

native drivers 243
paging and 243
portability of a 297
power management for a 283–287
power states 127
Reflector service and 268
registry entries for a 263
resource sharing between the OAL and a 226
shared memory region for communication 226
source code folders for a 217
Sources file directives for a 257
stream drivers 243

Device Driver Interface (DDI) 243
Device Emulator (DMA) 69
Device Emulator: ARMV4I 29
Device Manager 83

loading device drivers at boot time 261
overview of 247
Power Manager (PM.dll) 125
registry settings 93
shell of 247
stream driver interaction 244

device names 249
device register access 226
DeviceIoControl function 247, 292
DevicePowerNotify function 127, 133, 283
DHCP. See Dynamic Host Configuration Protocol (DHCP)
diagnose the overall health of the system 160
directives based on environment variables 41
directives for Sources files 61
Dirs files 57
DIRS keyword 57
DIRS_CE keyword 57
Disassembly tool 162
display item dependencies 53
DLL. See dynamic-link libraries (DLLs)
DLLENTRY directive 61
DllMain function 243
download methods 68, 186
download progress indication 212
dpCurSettings variable 156
Dr. Watson 118
driver globals (DRV_GLB) 207
driver power states 127
driver source code 205
DRIVER_GLOBALS structure 226
DriverDetect parameter 182
Drivers\BuiltIn registry key 261
DRV_GLB. See driver globals (DRV_GLB)
Dynamic Host Configuration Protocol (DHCP) 95, 187
dynamic management of debug messages 150
dynamic memory allocation 121
dynamically loading a driver 258

dynamically mapped virtual addresses 224
dynamic-link libraries (DLLs) 15

C interface and 99
device drivers and 243

DYNLINK directive 60

E
East Asian languages 7
Eboot boot loader 187
Eboot.bib file 206
elements

.NET Compact Framework 2.0 4
catalog items 3
Internet Explorer 4
OS design 3
WordPad 4

embedded operating systems
UNIX–based 103

embedded pointers 288, 292
Enable Eboot Space In Memory option 9
Enable Event Tracking During Boot option 9
Enable Hardware-Assisted Debugging Support option 9
Enable Kernel Debugger option 9
Enable Profiling option 9
enabling all debug zones 157
EnterCriticalSection function 110
Enterprise Terminal design template 4, 97
EnumDevices function 267
environment options 10
environment variables 10, 103

_TARGETPLATROOT 203
conditional statements based on 53
IMGNODEBUGGER 168
IMGNOKITL 168
WINCEDEBUG 150

Error List window 64
Error Report Generator catalog item 70
ERRORMSG macro 151
errors during the build process 63
Ethdbg boot loader 205
Ethernet download service 69
Ethernet support functions 210
Event API 114
event logging zones 163
event objects 114
event tracking 9

CeLog system and 116
exception handling 118–124

first chance 119
hardware 119
just in time (JIT) debugging 119

Index 319

kernel debugger and 119
memory access and 296
minimizing the total number of committed memory pages

through 121
postmortem debugger 118
raise exceptions 119
RaiseException function 119
second chance 119
syntax 120
termination handler 121
unhandled page faults 122

excluding debugging code from release builds 158
exclusion from a run-time image 17
eXDI. See Extended Debugging Interface (eXDI)
execute in place (XIP) 220
EXEENTRY directive 61
exiting threads 105
ExitThread function 106
export directive 99
exporting a catalog item from the catalog 24
exporting stream functions 255
Extended Debugging Interface (eXDI) 149
Extensible Data Interchange (XDI) 70
Extensible Markup Language (XML) 4
Extensible Resource Identifier (XRI) 70

F
Fast Interrupt (FIQ) line 276
file and directory structure of OS designs 11
file I/O operations 248
file system (.dat) files 46, 55
file system APIs 247
file type definitions for MODULES and FILES sections 52
files

.bib files 46

.dat files 46, 55

.db files 46, 54

.pbcxml files 21

.reg files 46, 54

.tks files 179
Bsp_cfg.h 276
Build.err 63
Build.log 63
Build.wrn 63
Ce.bib 47, 56
Chain.bin 51
Chain.lst 51
Common.bib 47
Config.bib 83, 224, 290
Device.dll 247
Devmgr.dll 247

Dirs files 57
Eboot.bib 206
Initdb.ini 56
Initobj.dat 55–56
Makefile file 61
Nk.bin file 41
Oalioctl.dll 226
Platform.bib 24, 51
Platform.dat 55
Platform.reg 54
Project.bib 47
Project.dat 55
Reginit.ini 56
shortcut files 94
Sources file 24, 59
Sysgen.bat 37
Udevice.exe 268

FILES section 51
Filesys.exe 55, 231
FileSystemPowerFunction 231–232
FIQ. See Fast Interrupt (FIQ) line
FIXUPVAR parameter 50
Flags registry value 266
flash memory support 211
Flush the X86 TLB on X86 systems 50
Flush Tracked Events To Release Directory option 9
FMerge tool (FMerge.exe) 67
FMerge.exe. See FMerge tool (FMerge.exe)
folder structure of a Board Support Package (BSP) 203
footprint of the operating system 1
ForceDuplicate parameter 293
frame buffers of peripheral devices 224
FreeIntChainHandler function 280–281
FreePhysMem function 226
FSRAMPERCENT parameter 50
full kernel mode 50

G
General Purpose Input/Output (GPIO) 90
general registry entries for device drivers 263
generic installable ISR (GIISR) 281
Getappverif_cetk.bat file 163
GetExitCodeThread function 106
GetProcAddress API 243
GIISR. See generic installable ISR (GIISR)
globally unique identifier (GUID) 264
GPIO. See General Purpose Input/Output (GPIO)
graphical user interface (GUI) 97
Graphics, Windowing, and Events Subsystem (GWES) 84, 92,

243
GUI. See graphical user interface (GUI)

320 Index

GUID. See globally unique identifier (GUID)
GWES. SeeGraphics, Windowing, and Events Subsystem

(GWES)
GwesPowerOffSystem function 230

H
H flag 271
HalTranslateBusAddress function 290
handles to system objects 103
hardware breakpoints 174
hardware conflicts 145
hardware debugger stub (HdStub) 148
hardware exceptions 119
hardware initialization tasks 209
hardware timer 83, 85

OEMIdle function and 136
hardware validation 90
hardware-assisted debugging 169
hardware-debugging interface 70
hardware-independent code 201
HdStub. See hardware debugger stub (HdStub)
Heap Walker 147
heaps 84
heat dissipation 125
high-performance counters 85
honor the /base linker setting 50
HookInterrupt function 276
host process groups 270

I
I/O controls (IOCTLs) 132
I/O operations 248
IClass definitions 135
IClass value 264, 284–285
IDE. See integrated development environment (IDE)
Idle event 229
Idle mode 229
Idle power state 83
idle threads 87
IEEE. See Institute of Electrical and Electronic Engineers

(IEEE)
IISR. See installable ISR (IISR)
ILTiming. See Interrupt Latency Timing (ILTiming) tool
image configuration files 56
IMGNODEBUGGER environment variable 168
IMGNOKITL environment variable 168
inactivity timeout 229
INCLUDES directive 60
InCradle 128
increase code re-usability 203

industrial control systems 101
infinite loops 147
INIT registry key 92
Initdb.ini file 56
initializing a device context 253
initializing virtual memory 213
Initobj.dat file 55–56
input/output operations 224
installable ISR (IISR) 280

architecture 280
DLL functions 280
external dependencies and 281
Plug and Play 280
registering an 281

instance-specific resources 252
Institute of Electrical and Electronic Engineers (IEEE) 186
integrated development environment (IDE) 5
IntelliSense 63
interface GUIDs 264
Interlock API 115, 214
internal test applications 13
internationalization 7

code pages 8
default locale 8
locales 7

Internet Explorer 4
Sample Browser catalog item 32
thin client shell and 97

inter-process communication 222
interrupt handlers

architecture of 272
breakpoints and 173
communication between an ISR and an IST 279
device drivers and 272–282
WaitForMultipleObjects function in 276

interrupt latency timing 85, 90, 216
Interrupt Latency Timing (ILTiming) tool 85, 216

parameters for the 86
interrupt mappings

dynamic 277
kernel arrays for 277
shared 279
static 276

Interrupt Service Routine (ISR) 216, 273–274
Interrupt Service Thread (IST) 216, 273–274
InterruptDone function 273
InterruptInitialize function 275
interrupts 272

synchronization capabilities in the OAL 272
IOControl function 244, 280, 284
IOCTLs. See I/O controls (IOCTLs)
IP address configuration 95
IPv6 4

Index 321

ISR latency 85, 216
ISR. See Interrupt Service Routine (ISR)
ISRHandler function 280
IST latency 85, 216
IST. See Interrupt Service Thread (IST)

J
JIT debugging. See just in time (JIT) debugging
joint test action group (JTAG) probe 169, 186
JTAG probe. See joint test action group (JTAG) probe
just in time (JIT) debugging 119, 149

K
K flag 270
Kato logging engine 182
Kato.exe. See test results logger (Kato.exe)
KdStub 70, 119, 148, 169
kernel access checks 293
kernel address space 220
kernel debugger 9, 149, 168–169

application debugging and 149
breaking into the 119
exception handling and 119
KdStub 70, 119, 148
obtaining run-time information 148

kernel driver restrictions 268
Kernel Independent Transport Layer (KITL) 3

boot arguments for 171
communication interface 170
enabling 9, 169
methods of operation 170
Remote Kernel Tracker tool 116
support functions 216
target control architecture and 148
transport mechanisms 70

kernel initialization routines 187
kernel interrupt mapping arrays 277
kernel memory regions 221
kernel objects 84

critical sections 110
events 110
interlocks 110
mutexes 110
semaphores 110
thread synchronization and 110

kernel process (Nk.exe) 291
kernel profiler 9
kernel space 219
kernel startup support functions 214
Kernel Tracker 147

KERNELFIXUPS parameter 50
KernelIoControl function 226, 277
kernel-mode drivers 268
KernelStart function 214
keyboard events 272
kiosk mode 101

managed applications and 101
sample code 138

KITL. See Kernel Independent Transport Layer (KITL)

L
LAN. See Local Area Network (LAN)
language settings 7
last known good configuration 55
latencies 85

ISRs and ISTs 85
LaunchXX entry 93
layered driver 245

architecture 244
LDEFINES directive 60
legacy names 248
LIBRARY directive 60
linker warnings and errors 63
List Nearest Symbols tool 162
LoadDriver function 83, 243
LoadIntChainHandler function 273, 279–281
LoadKernelLibrary function 224
LoadLibrary function 83, 243
Local Area Network (LAN) 29
locale 6
Localize The Build option 8
localize the OS design 7
lower power consumption 125

M
macros for debug messages 150

ASSERTMSG 151
DBGPARAM variable 152
debug zones and 151
DEBUGLED 151
DEBUGMSG 150
ERRORMSG 151
RETAILLED 151
RETAILMSG 151

main thread of a process 104
MainMemoryEndAddress function 225
Make Binary Image tool (Makeimg.exe) 37, 47
make run-time image phase 41

errors during the 67
Makefile file 61

322 Index

Makeimg.exe. See Make Binary Image tool (Makeimg.exe)
managed applications

kiosk mode and 101
Windows Embedded CE Test Kit (CETK) and 178

managed code development 32
mapping tables 213
marshaling data across boundaries 288–296
marshaling helpers 293
MDD. See model device driver (MDD)
mechanical wear and tear 125
medical monitoring devices 101
memcpy 296
memory access 288

asynchronous 293, 295
exception handling and 296
synchronous 294

memory layout 46
kernel regions 221
memory mapping of a BSP 219–227
process regions 222
reserved regions from system memory 291

memory leaks 145, 159
memory management

ARM–based platforms 223
critical sections and 84
demand paging 82
DEVFLAGS_LOADLIBRARY flag 83
dynamic allocation 121
dynamically mapped virtual addresses 224
heaps 84
LoadDriver function and 83
LoadLibrary function 83
MIPS–based platforms 223
mutexes and 84
noncontiguous physical memory and 225
pre-committing memory pages 121
processes and 84
reuse of system memory 84
ROMFLAGS option 83
sharing of memory 82
SHx–based platforms 223
statically mapped virtual addresses 224
system memory pool 84
unhandled page faults 122
virtual address space 103
x86–based platforms 223

Memory Management Unit (MMU) 213, 223, 288
memory mappings 206
memory regions 221–222
MEMORY section 48
Memory tool 162
memory-mapped files 222
menu of a boot loader 211

Microprocessor without Interlocked Pipeline Stages (MIPS)
281

Microsoft kernel code 214
Microsoft Platform Builder for Windows Embedded CE 6.0 1,

37
advanced debugger tools 161
analyzing build results 63–67
BSP Cloning Wizard 202
Catalog Editor 22
configuration files for 12
Debug Message Options 150
Debug Zones dialog box 155
Heap Walker 147
Kernel Tracker 147
OS Design Wizard 3
Process Viewer 147
Software Development Kit (SDK) 26
Subproject Wizard 14, 254
Target Control option 158
Target Device Connectivity Options dialog box 68, 169

Microsoft Visual Studio 2005 3
Build menu 41
building run-time images in 41–45
Catalog Items View 4
Configuration Manager 6
connectivity options in 68
debug information in the Output window of 149
debugging a target device 171
Error List window 64
IntelliSense 63
Open Build Window command 46
Output window 64
Solution Explorer 5
Watch window 155

minimizing the total number of committed memory pages
121

MIPS. See Microprocessor without Interlocked Pipeline Stages
(MIPS)

MIPS–based platforms 223
MmMapIoSpace function 226, 279, 290
MMU. See Memory Management Unit (MMU)
MmUnmapIoSpace function 290
model device driver (MDD) 18, 245
MODULES section 51
Modules tool 162
monolithic driver 245

architecture 244
mouse tests 182
multi-bin image notification 212
multiple platforms support 10
multitasking 103
multithreaded operating system 103
multithreaded programming 115

Index 323

mutexes 84, 111
CreateMutex function 111
deadlocks 115
Mutex API 112
ReleaseMutex function 112
TerminateThread function and 106

My Documents directory 55

N
naming conventions for drivers 248
native drivers 243
new system of managing virtual memory 219
NEWCPLINFO information 100
NK memory region 270
Nk.bin file 41
NKCallIntChain function 279
NKCreateStaticMapping function 224
NKDbgPrintf function 150
NKGLOBALS structure 214
Nmake.exe. See compiler and linker (Nmake.exe)
noise levels 125
NOLIBC=1 directive 281
non-cached virtual addresses 224
non-concurrent buffer access 294
noncontiguous memory 49

physical 225
non-real-time APIs 84
non-real-time components 82
NOTARGET directive 60

O
OAL. See OEM adaptation layer (OAL)
OALIntrRequestSysIntr function 277
OALIntrStaticTranslate function 277
Oalioctl.dll 226
OALPAtoVA function 279, 290
OALTimerIntrHandler function 85
object store 54
OEM adaptation layer (OAL) 3, 201

architecture-generic tasks 214
code sharing between the boot loader and the 214
interrupt management functions in the 275
interrupt-synchronization capabilities in the 272
IOCTL codes 226
OEMInit function 215
power management support and 228
Power Manager (PM.dll) 125
power state transitions and 228
Profile timer support functions 217
resource sharing between drivers and the 226

StartUp entry point of the 214
OEM address table 213
OEM. See Original Equipment Manufacturers (OEM)
OEMAddressTable table 213, 225
OEMEthGetFrame function 210
OEMEthGetSecs function 210
OEMEthSendFrame function 210
OEMGetExtensionDRAM function 225
OEMGLOBALS structure 214
OEMIdle function 135, 229
OEMInit function 215, 272
OEMInitGlobals function 214
OEMInterruptDisable function 275
OEMInterruptDone function 273, 275
OEMInterruptEnable function 275
OEMInterruptHandler function 275–276
OEMInterruptHandlerFIQ function 276
OEMIoControl function 226
OEMNMIHandler function 232
OEMPlatformInit routine 209
OEMPowerOff routine 230
OEMReadData function 210
OEMWriteDebugLED function 151
OHCI. See Open Host Controller Interface (OHCI)
Open Build Window command 46
open context 253
Open Host Controller Interface (OHCI) 277
OpenDeviceKey function 266
operating costs 125
operating system (OS)

advanced configurations 10
black shell 101
build options 3
command processor shell 96
componentized 91
creating and customizing 3–12
customization 5
dependency handling 93
design 1–35
Device Manager 83
elements 3
environment variables 10
footprint 1
internationalization 7
kernel objects 84
kiosk mode 101
language settings 7
managed code development 32
multithreaded 103
optimizing the performance 9
power management 83
processing model 103
real-time performance of the 88

324 Index

redistribute and OS design 11
run-time image 1
shells 96–97
source code 18
standard shell 97
system applications 91
thin client shell 97
UNIX–based 103
Windows Task Manager (TaskMan) 97
Windows-based Terminal (WBT) shell 97

Operating System Benchmark (OSBench). See OSBench
OPTIONAL_DIRS keyword 57
Original Equipment Manufacturers (OEM) 197
OS Access (OsAxS) 148
OS Design Wizard 3, 5, 12, 29

Board Support Packages wizard page 10
multiple platforms support 10–11
standard shell and 97

OS design. See operating system (OS) design
OsAxS. See OS Access (OsAxS)
OSBench tool 85, 87

parameters for the 88
source code of 87

OutOfCradle 128
OUTPUT parameter 50
Output window 64
overriding debug zones at startup 156

P
page faults

unhandled 122
PAN. See Personal Area Network (PAN)
PBCXML. See Platform Builder Catalog XML (PBCXML)
PCI. See Peripheral Component Interconnect (PCI)
PCMCIA. See Personal Computer Memory Card International

Association (PCMCIA)
PDA Device design template 4, 29
PDA. See personal digital assistant (PDA)
PDD. See platform device driver (PDD)
Pegasus registry key 157
performance monitoring 82–90

alerts for 90
charts for 90
interrupt latency timing 85, 90
reports for 90
waveform generators and 90

performance optimization 9, 82–90
PerfToCsv parser tool 185
Peripheral Component Interconnect (PCI) 241
persistent data storage 54
Personal Area Network (PAN) 29

Personal Computer Memory Card International Association
(PCMCIA) 249

personal digital assistant (PDA) 228
physical memory access restrictions 290
physical memory allocation 290
Platform Builder Catalog XML (PBCXML) 4
Platform Builder. See Microsoft Platform Builder for Windows

Embedded CE 6.0
Platform Builder–specific build commands 45
platform device driver (PDD) 245
Platform.bib file 24, 51
Platform.dat file 55
Platform.reg file 54
platform-specific source code 205
Plug and Play 247, 280
pNKEnumExtensionDRAM function 225
pointer marshaling 293
pointer parameters 292
portability of a device driver 297
PortNumber parameter 181
POSTLINK_PASS_CMD directive 61
postmortem debugger 70, 118
Power Control Panel applet 129
power management 83, 125–137

activity timers and 128
application interface 125, 133
benefits 125
context switching 83
device drivers and 283–287
device interface 126, 132
driver power states 127
I/O controls (IOCTLs) for 132, 284
Idle event 229
Idle power state 83
notification interface 125, 130, 285
OEM adaptation layer (OAL) 125, 228
optimizing power consumption by using dynamic timers

136
processor idle state 135
restrictions of 284
sample code 138
single-threaded mode and 284
system power states 127
wakeup sources and 232

Power Manager (PM.dll) 125
APIs 126
application interface 125, 133
architecture 125
battery life and 127
components 125
device drivers and 283
device interface 126, 132
notification interface 125, 130

Index 325

power states
activity timers and 128
configuration of 134
Critical Off state 229, 232
device classes and 135
driver 127
InCradle 128
internal transitions of 133
OutOfCradle 128
overriding the configuration for an individual device 134
power-off state 229
processor idle 135
registry entries for 134
Suspend state 229–230
system 127
transitions of 128, 228
waking up from Suspend state 231

power-off state 229
PowerOffSystem function 126, 231
PQOAL. See Production Quality OEM adaptation layer

(PQOAL)
pre-boot routines 186
pre-committing memory pages 121
preemptive multitasking 103
PRELINK_PASS_CMD directive 61
preprocessing conditions 54
primary thread of execution 103
priority list for threads 103
process address space 222
process identifier 103
Process Management API 104
Process Viewer 147
processes and threads 103
Processes tool 162
processing model 103
processor idle state 135
Production Quality OEM adaptation layer (PQOAL) 197

advanced debugger tools 201
professional Windows Embedded CE solutions 21
PROFILE parameter 50
Profile timer support functions 217
program database (.pdb) files 6
PROGRAM directive 60
Program Files directory 55
Project.bib file 47
Project.dat file 55
Projsysgen.bat file 16
public source code 18

modifications 19
public tree modification 18

Q
Q flag 271
QRimplicit-import 281
quality assurance 145
quantum 104
QueryPerformanceCounter function 88
QueryPerformanceFrequency function 88

R
race conditions 147
RaiseException function 119
raising exceptions 119
RAM file system 50, 55
RAM_AUTOSIZE parameter 50
RAM-backed map files 222
RAMIMAGE parameter 49, 225
RDEFINES directive 60
RDP. See Remote Desktop Protocol (RDP)
Readlog tool 165
real-time performance 82, 88

measurement tools 84
real-time systems design 81
rebuild commands 42
Rebuild Current BSP And Subprojects 24
redistributing an OS design 11
reducing BSP development time 201
reference naming matching 166
Reflector service 268
Reginit.ini file 56, 266
RegisterDevice function 258
Registers tool 162
registry (.reg) files 46, 54
registry settings 92

CELog registry parameters 163
CELogFlush tool 165
Clientside.exe start parameters 181
command processor shell 96
Console key 96
CurrentControlSet\State key 134
debug zones and 156
DependXX entry 93
device classes and 135
device drivers and 263
event logging zones and 163
Flags registry value 266
HKEY_LOCAL_MACHINE\Drivers\Active 262, 297
HKEY_LOCAL_MACHINE\Drivers\BuiltIn 261, 297
HKEY_LOCAL_MACHINE\INIT 92
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Co

ntrol\Power\Interfaces 285
interrupt-related 298

326 Index

LaunchXX entry 93
memory-related 299
PCI-related 299
Pegasus registry key 157
power state definitions 134
startup parameters 92
subprojects and 16
Svcstart sample service 95
user mode driver host process (Udevice.exe) and 269
UserProcGroup registry entry 270

Reldir directory 12
Release build configuration 6, 10
release copy phase 41

errors during the 66
skipping the 41

release directory 41
ReleaseMutex function 112
ReleaseSemaphore function 113
RELEASETYPE directive 60
Remote Desktop Protocol (RDP) 4, 97
Remote Kernel Tracker tool 116, 164
Remote Performance Monitor 85, 88

extension DLLs 89
monitored objects 89

RequestDeviceNotifications function 267
RESERVED keyword 291
RESETVECTOR parameter 50
Resource Consume tool 179
resource sharing between drivers and the OAL 226
restrictions of power management 284
ResumeThread function 108
resuming threads 108
retail macros for debugging 150
RETAILLED macro 151
RETAILMSG macro 151
reuse of code 197
reuse of system memory 84
robustness of applications 118
ROM Image Builder tool (Romimage.exe) 47
ROM image file system 187
ROM Windows directory 55
ROM_AUTOSIZE parameter 50
ROM–based applications 55
ROMFLAGS option 83
ROMFLAGS parameter 50
Romimage.exe. See ROM Image Builder tool (Romimage.exe)
ROMOFFSET parameter 50
ROMSIZE parameter 50
ROMSTART parameter 50
ROMWIDTH parameter 50
RS232 connection 69
run-time image 1

adding custom settings to a 46

building and deploying 37–79
building and deploying from the command line 46
configuration files for the 56
content of a 46
deploying 68–71
download methods 186, 210
excluding a subproject from a 17

Run-Time Image Can Be Larger Than 32 MB option 9

S
S flag 271
sample code

CreateFile function 257
dynamic memory allocation technique 123
dynamically loading a driver 258
implementing stream functions 254
initializing a device context 253
Interrupt Service Thread (IST) 275
IOCTL_HAL_REQUEST_SYSINTR and

IOCTL_HAL_RELEASE_SYSINTR 277
kiosk mode 138
non-concurrent buffer access 294
OEMAddressTable table 213
OEMPlatformInit function 210
power management 138
power notifications 131
thread execution 138
thread management 109

Sample Device Emulator eXDI2 Driver 70, 169
scheduling

quantum 104
thread scheduler 136
time-slice algorithm 104

SCM. See Service Control Manager (SCM)
SDK. See Software Development Kit (SDK)
search for catalog items 6
sections of .bib files 47

CONFIG section 49
MEMORY 48

security context 103
SEH. See structured exception handling (SEH)
semaphores 112–113

CreateSemaphore function 112
nonsignaled state 113
ReleaseSemaphore function 113

sequential access scenario 295
serial communication parameters 69
serial debug output functions 209
Serial Peripheral Interface (SPI) 252
ServerIP parameter 181
ServerName parameter 181

Index 327

Service Control Manager (SCM) 95
services host process (Services.exe) 95
Services.exe. See services host process (Services.exe)
SetDbgZone function 155
SetSystemPowerState function 230
setting a breakpoint 172
shared memory region for driver communication 226
shells 96–97

black shell 101
command processor shell 96
standard shell 97
thin client shell 97
Windows Task Manager (TaskMan) 97
Windows-based Terminal (WBT) 97

ship builds 164
shortcut files 94
shortcuts on the desktop 55
SHx–based platforms 223
SignalStarted API 93, 101
Simple Windows Embedded CE DLL Subproject template

254
single-threaded mode 284
skeleton Tux module 183
SKIPBUILD directive 61
skipping the release copy phase 41
Sleep function 83, 108
SleepTillTick function 108
Small Footprint Device design template 4
small-footprint devices 82
software development cycle 145
Software Development Kit (SDK) 26–28

adding new files 27
build process and 40
configuring and generating 26
generating and testing 35
installation of 28

software exceptions 119
software-related errors 147–167
Solution Explorer 5, 41

Catalog Item Dependencies window 6
Catalog Items View 5
Dirs files and 59
Property Pages dialog box 6
Subproject Wizard 14

source code 18
Control Panel 98
driver globals 207
drivers 205
Eboot.bib file 206
folders for device drivers 217
Power Manager (PM.dll) 126
thread management sample code 109
Windows Task Manager (TaskMan) 97

source control software 12
SOURCELIBS directive 60
SOURCES directive 60
Sources file 24, 59

ADEFINES directive 60
CDEFINES directive 60
CDEFINES entry 24
Control Panel and 100
DEFFILE directive 61
DLLENTRY directive 61
DYNLINK directive 60
EXEENTRY directive 61
INCLUDES directive 60
LDEFINES directive 60
LIBRARY directive 60
NOTARGET directive 60
POSTLINK_PASS_CMD directive 61
PRELINK_PASS_CMD directive 61
PROGRAM directive 60
RDEFINES directive 60
RELEASETYPE directive 60
SKIPBUILD directive 61
SOURCELIBS directive 60
SOURCES directive 60
TARGETLIBS directive 60
TARGETNAME directive 60
TARGETPATH directive 60
TARGETTYPE directive 60
WINCE_OVERRIDE_CFLAGS directive 61
WINCECPU directive 61
WINCETARGETFILE0 directive 61
WINCETARGETFILES directive 61

Sources file directives for a device driver 257
SPI. See Serial Peripheral Interface (SPI)
SRE parameter 50
standalone mode 182
standard command prompt 46
standard directives for Sources files 61
standard shell 97

removing the 101
Start menu 55
startup configuration 91

delayed startup and 95
StartUp entry point of a boot loader 208
Startup folder 94

restrictions 94
StartUp function 187
startup registry parameters 92
startup time

reducing 4
StartupProcessFolder function 94
starvation 161
static libraries 15

328 Index

static mapping regions of the kernel 223
statically mapped virtual addresses 224
Storage Device Block Driver Benchmark Test 180
storage partitioning routines 187
stream driver. See also stream interface driver
stream drivers 243

context management and 252
CreateFile function and 257
device names for 249
exporting stream functions 255
instance-specific resources 252
kernel mode restrictions for 268
legacy names for 248
load procedure for 261
loading and unloading 247, 258
naming conventions for 248
Plug and Play 247
Sources file directives for 257
XXX prefix and 252

stream interface API 250
exporting stream functions 255

stream interface driver 247
Strict Localization Checking In The Build option 8
structured exception handling (SEH) 119

__except keyword 120
__finally keyword 121
__try keyword 120
frame–based 120

subprojects 3
configurations files 14
configuring 13, 16–17
creating and adding 14
Dirs files and 57
dynamic-link libraries (DLLs) and 15
excluding from a run-time image 17
image settings 16
Projsysgen.bat file 16
registry settings and 16
reusing customizations and 47
static libraries and 15
Subproject Wizard 14
SYSGEN variables and 16
TARGETTYPE=NOTARGET 16
types of 13
without source code 16

Suspend state 229–230
suspending threads 108
SuspendThread function 108
Svcstart sample service 95

registry parameters for 95
symbols 162
synchronization

deadlocks 115

thread 103
unintentional 157

synchronous memory access 294
syntax check for source code 63
Sysgen capture tool 19
Sysgen phase 40

errors during the 65
SYSGEN variables 10

conditional statements based on 53
subprojects and 16

Sysgen.bat 37
SYSINTR value 273, 276
SYSINTR_NOP value 274
SYSINTR_TIMING interrupt event 85
system applications 91
system memory mapping 219
system memory pool 84
system performance

monitoring 82–90
optimization 82–90
real-time operating systems and 82

system power states 127
system programming 81–144
system scheduler 83
system testing 145, 176
system timer 83

T
target control architecture 148
target control commands 159
Target Control service 158
target control shell. See CE target control shell (CESH)
target device

attaching to 71
debugger options 70
defining communication parameters for a 68
initialize the file system and the system registry 46
loading Windows Embedded CE on a 68

Target Device Connectivity Options dialog box 68, 169
target device control 147
TARGETLIBS directive 60
TARGETNAME directive 60
TARGETPATH directive 60
TARGETTYPE directive 60
TARGETTYPE=NOTARGET 16
TCP/IPv6 Support 29
template variants 4
Terminal server 97
TerminateThread function 106
terminating threads 105
termination handler 121

Index 329

test access port and boundary-scanning technology 186
test engine (Tux.exe) 177

command-line parameters 182
Test Kit Suite (.tks) files 179
test results logger (Kato.exe) 177
test suite 179
testing a system 145–196

automated 176
TFTP. See Trivial File Transfer Protocol (TFTP)
Thin Client design template 4
thin client shell 97
thread 83

creating 105
deadlocks 115
definition 103
exiting 105
idle 87
main thread of a process 104
management functions 105
maximum number of 103
primary of execution 103
priority 103, 107
priority levels 107
quantum 104
resuming 108
sample code 138
scheduler 136
scheduling 103
starvation 161
suspending 108
synchronization 103, 110
terminating 105
time-slice algorithm 104
troubleshooting synchronization 115
unintentional synchronization 157
worker threads 104

Thread Management API 104
thread priority 83
thread synchronization

interrupt handling and 272
unintentional 157

Threads tool 162
tick timer 85
timer events 272
timers

hardware timer 83
OALTimerIntrHandler function 85
power management and 128
SleepTillTick function 108
SYSINTR_TIMING interrupt event 85
system timer 83

time-slice algorithm 104
TLB. See Transition Lookaside Buffer (TLB)

tools
advanced debugger tools 161
Advanced Memory tool 162
Application Verifier tool 162, 179
Autos tool 161
Breakpoints 161
Build.exe 57
Call Stack tool 161
CE Stress tool 179
CELogFlush tool 164
CETest.exe 177
Cetkpar.exe 185
Clientside.exe 177, 180
Control Panel 97
CPU Monitor 179
debugging and testing 145
Disassembly tool 162
Dr. Watson 118
Filesys.exe 55
FMerge (FMerge.exe) 67
Heap Walker 147
ILTiming 85, 216
Kato.exe 177
Kernel Tracker 147
List Nearest Symbols tool 162
Make Binary Image (Makeimg.exe) 37, 47
Memory tool 162
Modules tool 162
Nmake.exe 57
OSBench 85
PerfToCsv parser 185
Power Control Panel applet 129
Process Viewer 147
Processes tool 162
Readlog tool 165
real-time performance measurement 84
Registers tool 162
Remote Kernel Tracker 116, 164
Remote Performance Monitor 85, 88
Resource Consume tool 179
ROM Image Builder (Romimage.exe) 47
Sysgen capture tool 19
Sysgen.bat 37
Threads tool 162
Tux.exe 177
Watch window 161
Windows Task Manager (TaskMan) 97

transaction–based storage mechanism 54
TransBusAddrToVirtual function 290
Transition Lookaside Buffer (TLB) 214
transport mechanisms 68, 70
trap handler 272
Trivial File Transfer Protocol (TFTP) 187

330 Index

troubleshooting
build issues 65
thread synchronization 115

Trust only ROM modules 50
trusted images 212
TryEnterCriticalSection function 110
TUX DLL template 183
Tux.exe. See test engine (Tux.exe)

U
UART. See Universal Asynchronous Receiver/Transmitter

(UART)
Udevice.exe. See user mode driver host process (Udevice.exe)
UDP. See User Datagram Protocol (UDP)
uninitialized variables 147
unintentional thread synchronization 157
Universal Asynchronous Receiver/Transmitter (UART) 186
Universal Serial Bus (USB) 69
UNIX–based embedded operating systems 103
unrecoverable system lockup 284
USB. See Universal Serial Bus (USB)
Use Xcopy Instead Of Links To Populate Release Directory

option 10
user applications 91

Terminal server and 97
User Datagram Protocol (UDP) 187
user mode driver host process (Udevice.exe) 268

application caller buffers and 291
registry entries for 269

user space 219
User-Defined Test Wizard 183
user-mode drivers 268
UserProcGroup registry entry 270

V
validate a system in its final configuration 145
video memory 232
virtual address space 103

dynamically mapped addresses 224
frame buffers of peripheral devices and 224
input/output operations and 224
kernel space 219
non-cached 224
noncontiguous physical memory and 225
statically mapped addresses 224
user space 219

virtual memory
initializing 213
mapping tables 213
new system of 219

Virtual Memory Manager (VMM) 288
VirtualAlloc function 122, 224, 279, 296
VirtualCopy function 224, 279
VirtualFree function 224
virtual-to-physical address mappings 213
Visual Studio 2005. See Microsoft Visual Studio 2005
VMM. See Virtual Memory Manager (VMM)
vulnerabilities 293

W
WaitForMultipleObjects function 108, 276
WaitForSingleObject function 108, 274
wakeup sources 232
waking up from Suspend state 231
Watch window 155, 161
waveform generator 90
WCE TUX DLL template 183
Win32 API 84
WINCE_OVERRIDE_CFLAGS directive 61
WINCECPU directive 61
WINCEDEBUG environment variable 150
WINCETARGETFILE0 directive 61
WINCETARGETFILES directive 61
window drawing 84
Windows directory 55
Windows Embedded CE custom test components for the

Microsoft Windows CE Test Kit (CETK) 14
Windows Embedded CE shells 96–97
Windows Embedded CE Standard Shell 97
Windows Embedded CE Subproject Wizard 14, 254
Windows Embedded CE Test Kit (CETK) 176–185

analyzing test results 184
Application Verifier tool 162
architecture of 176
CETK parser (Cetkpar.exe) 185
client-side application (Clientside.exe) 177
command-line parameters for 180
custom tests based on 179–180, 182
managed code and 178
overview of 176
PerfToCsv parser tool 185
skeleton Tux module 183
standalone mode 182
test engine (Tux.exe) 177
Test Kit Suite (.tks) files 179
test results logger (Kato.exe) 177
Test Suite Editor 179
User-Defined Test Wizard 183
workstation server application (CETest.exe) 178
zorch parameter 180

Windows Manager 232

Index 331

Windows Network Projector 4
Windows Sockets (Winsock) 177
Windows Task Manager (TaskMan) 97
Windows Thin Client 4
Windows-based Terminal (WBT) shell 97
Winsock. See Windows Sockets (Winsock)
WMV/MPEG-4 Video Codec 4
WordPad 4
worker threads 104
workstation server application (CETest.exe) 177–178
Write Run-Time Image To Flash Memory option 10
WriteDebugLED function 151

X
x86–based platforms 223
X86BOOT parameter 51
XDI. See Extensible Data Interchange (XDI)

XIP chain 51
XIP. See execute in place (XIP)
XIPSCHAIN parameter 51
XML. See Extensible Markup Language (XML)
XRI. See Extensible Resource Identifier (XRI)
XXX prefix 252
XXX_Init function 266
XXX_IOControl function 283, 292
XXX_PowerDown function 283
XXX_PowerUp function 283

Z
zone definitions 154
zones registration 152
zorch parameter 180
 297

333

About the Authors

Nicolas Besson
Nicolas Besson has over seven years of in-depth technical expe-
rience with Windows Embedded CE technologies. He currently
specializes in Software Development and Project Management at
Adeneo, a key Microsoft Gold Embedded Partner with world-
wide presence that focuses on Windows Embedded CE technol-
ogies. Nicolas has been a Microsoft eMVP for the last two years.
He shares his knowledge by providing training for companies
and people around the world. You can read more about his pas-
sion for Windows Embedded CE technologies on his blog at
http://nicolasbesson.blogspot.com.

Ray Marcilla
Ray Marcilla is an Embedded Software Developer at Adeneo's
American branch in Bellevue, Washington. Ray has significant
experience in application development with native and managed
code, as well as CE driver development. He also participates in
CE-related technical presentations and workshops. Ray has
worked on a number of interesting projects for ARM and x86
development platforms. In his free time, he likes to study foreign
languages; he's currently fluent in Japanese, and can speak some
Korean and French.

334 About the Authors

Rajesh Kakde
Rajesh has been associated with Windows Embedded CE since
2001. He has worked in various parts of the world in different
segments of the industry including Consumer Electronics &
Industrial Real-time Devices. He has extensive experience in BSP
and driver development, as well as application development.

Currently, he is part of the Adeneo Corp. team as a Senior
Windows Embedded Consultant and provides technical exper-
tise on BSPs and drivers, as well as management for various OEM
projects. He also delivers Windows Embedded CE workshops
and trainings with Adeneo, which allow him to exchange ideas
and share his passion for this technology.

	Contents at a Glance
	Table of Contents
	Foreword
	Introduction
	Intended Audience
	Features of This Book
	Hardware Requirements
	Software Requirements
	Notational Conventions
	Keyboard Conventions
	Notes

	About the Companion CD-ROM
	Microsoft Certified Professional Program
	Technical Support

	Chapter 1 - Customizing the Operating System Design
	Before You Begin
	Lesson 1: Creating and Customizing the Operating System Design
	Operating System Design Overview
	Creating an OS Design
	The OS Design Template

	OS Design Customization with Catalog Components
	Build Configuration Management
	OS Design Property Pages
	Locale Options
	Build Options
	Environment Options

	Advanced OS Design Configurations
	Associating an OS Design with Multiple Platforms
	OS Design Paths and Files
	Source Control Software Considerations

	Lesson Summary

	Lesson 2: Configuring Windows Embedded CE Subprojects
	Windows Embedded Subprojects Overview
	Types of Subprojects

	Creating and Adding Subprojects to an OS Design
	Creating Windows Embedded CE Applications and DLLs
	Creating Static Libraries
	Creating a Subproject to Add Files or Environment Variables to a Run-Time Image

	Configuring a Subproject
	Lesson Summary

	Lesson 3: Cloning Components
	Public Tree Modification and Component Cloning
	Cloning Public Code
	Lesson Summary

	Lesson 4: Managing Catalog Items
	Catalog Files Overview
	Creating and Modifying Catalog Entries
	Catalog Entry Properties
	Adding a New Catalog Item to an OS Design
	Using a Catalog Item for BSP Development
	Exporting a Catalog Item from the Catalog

	Catalog Component Dependencies
	Lesson Summary

	Lesson 5: Generating a Software Development Kit
	Software Development Kit Overview
	SDK Generation
	Configuring and Generating an SDK
	Adding New Files to an SDK

	Installing an SDK
	Lesson Summary

	Lab 1: Creating, Configuring, and Building an OS Design
	 Create an OS Design
	 Inspect the OS Catalog
	 Add Support for the Internet Explorer 6.0 Sample Browser Catalog Item
	 Add Support for Managed Code Development to Your OS Design

	Chapter Review
	Key Terms
	Suggested Practice
	Create a Custom OS Design
	Generate and Test an SDK

	Chapter 2 - Building and Deploying a Run-Time Image
	Before You Begin
	Lesson 1: Building a Run-Time Image
	Build Process Overview
	Building Run-Time Images in Visual Studio
	Building Run-Time Images from the Command Line
	Windows Embedded CE Run-Time Image Content
	Binary Image Builder Files
	Registry Files
	Database Files
	File System Files

	Lesson Summary

	Lesson 2: Editing Build Configuration Files
	Dirs Files
	Sources Files
	Makefile Files
	Lesson Summary

	Lesson 3: Analyzing Build Results
	Understanding Build Reports
	Troubleshooting Build Issues
	Errors during the Sysgen Phase
	Errors during the Build Phase
	Errors during the Release Copy Phase
	Errors during the Make Run-Time Image Phase

	Lesson Summary

	Lesson 4: Deploying a Run-Time Image on a Target Platform
	Choosing a Deployment Method
	Download Layer
	Transport Layer
	Debugger Options

	Attaching to a Device
	Lesson Summary

	Lab 2: Building and Deploying a Run-Time Image
	Build a Run-Time Image for an OS Design
	Configure Connectivity Options
	Change the Emulator Configuration
	Test a Run-Time Image on the Device Emulator

	Chapter Review
	Key Terms
	Suggested Practice
	Start the Build Process from the Command Line
	Deploy Run-Time Images
	Clone a Public Catalog Component Manually

	Chapter 3 - Performing System Programming
	Before You Begin
	Lesson 1: Monitoring and Optimizing System Performance
	Real-Time Performance
	Demand Paging
	System Timer
	Power Management
	System Memory
	Non-Real-Time APIs

	Real-Time Performance Measurement Tools
	Interrupt Latency Timing (ILTiming)
	Operating System Benchmark (OSBench)
	Remote Performance Monitor
	Hardware Validation

	Lesson Summary

	Lesson 2: Implementing System Applications
	System Application Overview
	Start an Application at Startup
	HKEY_LOCAL_MACHINE\INIT Registry Key
	The Startup Folder
	Delayed Startup

	Windows Embedded CE Shell
	Command Processor Shell
	Windows Embedded CE Standard Shell
	Thin Client Shell
	Taskman

	Windows Embedded CE Control Panel
	Control Panel Components
	Implementing Control Panel Applets
	Building Control Panel Applets

	Enabling Kiosk Mode
	Lesson Summary

	Lesson 3: Implementing Threads and Thread Synchronization
	Processes and Threads
	Thread Scheduling on Windows Embedded CE
	Process Management API
	Thread Management API
	Creating, Exiting, and Terminating Threads
	Managing Thread Priority
	Suspending and Resuming Threads
	Thread Management Sample Code

	Thread Synchronization
	Critical Sections
	Mutexes
	Semaphores
	Events
	Interlocked Functions

	Troubleshooting Thread Synchronization Issues
	Lesson Summary

	Lesson 4: Implementing Exception Handling
	Exception Handling Overview
	Exception Handling and Kernel Debugging
	Hardware and Software Exceptions

	Exception Handler Syntax
	Termination Handler Syntax
	Dynamic Memory Allocation
	Lesson Summary

	Lesson 5: Implementing Power Management
	Power Manager Overview
	Power Manager Components and Architecture
	Power Manager Source Code

	Driver Power States
	System Power States
	Activity Timers
	Power Management API
	Notification Interface
	Device Driver Interface
	Application Interface

	Power State Configuration
	Overriding the Power State Configuration for an Individual Device
	Overriding the Power State Configuration for Device Classes

	Processor Idle State
	Lesson Summary

	Lab 3: Kiosk Mode, Threads, and Power Management
	 Create a Thread
	 Enable Power Management Notification Messages
	 Enable Kiosk Mode

	Chapter Review
	Key Terms
	Suggested Practices
	Use the ILTiming and OSBench Tools
	Implement a Custom Shell
	Experiment with Multithreaded Applications and Critical Sections

	Chapter 4 - Debugging and Testing the System
	Before You Begin
	Lesson 1: Detecting Software-Related Errors
	Debugging and Target Device Control
	Kernel Debugger
	Debug Message Service
	Macros for Debug Messages
	Debug Zones
	Zones Registration
	Zone Definitions
	Enabling and Disabling Debug Zones
	Overriding Debug Zones at Startup
	Best Practices

	Target Control Commands
	Debugger Extension Commands (CEDebugX)
	Advanced Debugger Tools
	Application Verifier Tool
	CeLog Event Tracking and Processing
	Remote Kernel Tracker
	CeLogFlush Tool
	Readlog Tool

	Lesson Summary

	Lesson 2: Configuring the Run-Time Image to Enable Debugging
	Enabling the Kernel Debugger
	OS Design Settings
	Selecting a Debugger

	KITL
	Debugging a Target Device
	Enabling and Managing Breakpoints
	Breakpoint Restrictions

	Lesson Summary

	Lesson 3: Testing a System by using the CETK
	Windows Embedded CE Test Kit Overview
	CETK Architecture

	Using the CETK
	Using the CETK Workstation Server Application
	Create a Test Suite
	Customizing Default Tests
	Running Clientside.exe Manually
	Running CETK Tests in Standalone Mode

	Creating a Custom CETK Test Solution
	Creating a Custom Tux Module
	Defining a Custom Test in the CETK Test Application
	Debugging a Custom Test

	Analyzing CETK Test Results
	Lesson Summary

	Lesson 4: Testing the Boot Loader
	CE Boot Loader Architecture
	Debugging Techniques for Boot Loaders
	Lesson Summary

	Lab 4: System Debugging and Testing based on KITL, Debug Zones, and CETK Tools
	 Enable KITL and Use Debug Zones
	 Perform Mouse Driver Tests by Using the CETK

	Chapter Review
	Key Terms
	Suggested Practices
	Detect Memory Leaks
	Custom CETK Test

	Chapter 5 - Customizing a Board Support Package
	Before You Begin
	Lesson 1: Adapting and Configuring a Board Support Package
	Board Support Package Overview
	Adapting a Board Support Package
	Cloning a Reference BSP
	BSP Folder Structure
	Platform-Specific Source Code

	Implementing a Boot Loader from Existing Libraries
	Memory Mappings
	Driver Globals
	StartUp Entry Point and Main Function
	Serial Debug Output
	Platform Initialization
	Downloading via Ethernet
	Flash Memory Support
	User Interaction
	Additional Features

	Adapting an OAL
	OEM Address Table
	StartUp Entry Point
	Kernel Independent Transport Layer
	Profile Timer Support

	Integrating New Device Drivers
	Device Driver Code Locations

	Modifying Configuration Files
	Lesson Summary

	Lesson 2: Configuring Memory Mapping of a BSP
	System Memory Mapping
	Kernel Address Space
	Process Address Space
	Memory Management Unit
	Statically Mapped Virtual Addresses
	Dynamically Mapped Virtual Addresses

	Memory Mapping and the BSP
	Mapping Noncontiguous Physical Memory

	Enabling Resource Sharing between Drivers and the OAL
	Dynamically Accessing Physical Memory
	Statically Reserving Physical Memory
	Communication between Drivers and the OAL

	Lesson Summary

	Lesson 3: Adding Power Management Support to an OAL
	Power State Transitions
	Reducing Power Consumption in Idle Mode
	Powering Off and Suspending the System
	Entering the Suspend State
	Waking Up from Suspend State

	Supporting the Critical Off State
	Lesson Summary

	Lab 5: Adapting a Board Support Package
	 Clone a BSP
	 Create a Run-Time Image
	 Customize the BSP

	Chapter Review
	Key Terms
	Suggested Practices
	Access the Hardware Registers of a Peripheral Device
	Reorganize Platform Memory Mappings

	Chapter 6 - Developing Device Drivers
	Before You Begin
	Lesson 1: Understanding Device Driver Basics
	Native and Stream Drivers
	Monolithic vs. Layered Driver Architecture
	Monolithic Drivers
	Layered Drivers

	Lesson Summary

	Lesson 2: Implementing a Stream Interface Driver
	Device Manager
	Driver Naming Conventions
	Stream Interface API
	Device Driver Context
	Building a Device Driver
	Implementing Stream Functions
	Exporting Stream Functions
	Sources File

	Opening and Closing a Stream Driver by Using the File API
	Dynamically Loading a Driver
	Lesson Summary

	Lesson 3: Configuring and Loading a Driver
	Device Driver Load Procedure
	Registry Settings to Load Device Drivers
	Registry Keys Related to Loaded Device Drivers

	Kernel-Mode and User-Mode Drivers
	User-Mode Drivers and the Reflector Service
	User-Mode Drivers Registry Settings
	Binary Image Builder Configuration

	Lesson Summary

	Lesson 4: Implementing an Interrupt Mechanism in a Device Driver
	Interrupt Handling Architecture
	Interrupt Service Routines
	Interrupt Service Threads

	Interrupt Identifiers (IRQ and SYSINTR)
	Static Interrupt Mappings
	Dynamic Interrupt Mappings
	Shared Interrupt Mappings

	Communication between an ISR and an IST
	Installable ISRs
	Registering an IISR
	External Dependencies and Installable ISRs

	Lesson Summary

	Lesson 5: Implementing Power Management for a Device Driver
	Power Manager Device Drivers Interface
	XXX_PowerUp and XXX_PowerDown
	IOControl
	IClass Power Management Interfaces

	Lesson Summary

	Lesson 6: Marshaling Data across Boundaries
	Understanding Memory Access
	Allocating Physical Memory
	Application Caller Buffers
	Using Pointer Parameters
	Using Embedded Pointers
	Handling Buffers
	Synchronous Access
	Asynchronous Access
	Exception Handling

	Lesson Summary

	Lesson 7: Enhancing Driver Portability
	Accessing Registry Settings in a Driver
	Interrupt-Related Registry Settings
	Memory-Related Registry Settings
	PCI-Related Registry Settings
	Developing Bus-Agnostic Drivers
	Lesson Summary

	Lab 6: Developing Device Drivers
	 Add a Stream Interface Driver to a Run-Time Image
	 Access the Driver from an Application
	 Adding Power Management Support

	Chapter Review
	Key Terms
	Suggested Practice
	Enhance Power Management Features
	More IOCTLs
	Installable ISR

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	About the Authors
	Nicolas Besson
	Ray Marcilla
	Rajesh Kakde

